tensorflow2 自定义损失函数使用的隐藏坑

Keras的核心原则是逐步揭示复杂性,可以在保持相应的高级便利性的同时,对操作细节进行更多控制。当我们要自定义fit中的训练算法时,可以重写模型中的train_step方法,然后调用fit来训练模型。

这里以tensorflow2官网中的例子来说明:

import numpy as np
import tensorflow as tf
from tensorflow import keras
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
class CustomModel(keras.Model):
    tf.random.set_seed(100)
    def train_step(self, data):
        # Unpack the data. Its structure depends on your model and
        # on what you pass to `fit()`.
        x, y = data

        with tf.GradientTape() as tape:
            y_pred = self(x, training=True)  # Forward pass
            # Compute the loss value
            # (the loss function is configured in `compile()`)
            loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)

        # Compute gradients
        trainable_vars = self.trainable_variables
        gradients = tape.gradient(loss, trainable_vars)
        # Update weights
        self.optimizer.apply_gradients(zip(gradients, trainable_vars))
        # Update metrics (includes the metric that tracks the loss)
        self.compiled_metrics.update_state(y, y_pred)
        # Return a dict mapping metric names to current value
        return {m.name: m.result() for m in self.metrics}

# Construct and compile an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(optimizer="adam", loss=tf.losses.MSE, metrics=["mae"])

# Just use `fit` as usual

model.fit(x, y, epochs=1, shuffle=False)
32/32 [==============================] - 0s 1ms/step - loss: 0.2783 - mae: 0.4257

<tensorflow.python.keras.callbacks.History at 0x7ff7edf6dfd0>

这里的loss是tensorflow库中实现了的损失函数,如果想自定义损失函数,然后将损失函数传入model.compile中,能正常按我们预想的work吗?

答案竟然是否定的,而且没有错误提示,只是loss计算不会符合我们的预期。

def custom_mse(y_true, y_pred):
    return tf.reduce_mean((y_true - y_pred)**2, axis=-1)
a_true = tf.constant([1., 1.5, 1.2])
a_pred = tf.constant([1., 2, 1.5])
custom_mse(a_true, a_pred)
<tf.Tensor: shape=(), dtype=float32, numpy=0.11333332>
tf.losses.MSE(a_true, a_pred)
<tf.Tensor: shape=(), dtype=float32, numpy=0.11333332>

以上结果证实了我们自定义loss的正确性,下面我们直接将自定义的loss置入compile中的loss参数中,看看会发生什么。

my_model = CustomModel(inputs, outputs)
my_model.compile(optimizer="adam", loss=custom_mse, metrics=["mae"])
my_model.fit(x, y, epochs=1, shuffle=False)
32/32 [==============================] - 0s 820us/step - loss: 0.1628 - mae: 0.3257

<tensorflow.python.keras.callbacks.History at 0x7ff7edeb7810>

我们看到,这里的loss与我们与标准的tf.losses.MSE明显不同。这说明我们自定义的loss以这种方式直接传递进model.compile中,是完全错误的操作。

正确运用自定义loss的姿势是什么呢?下面揭晓。

loss_tracker = keras.metrics.Mean(name="loss")
mae_metric = keras.metrics.MeanAbsoluteError(name="mae")

class MyCustomModel(keras.Model):
    tf.random.set_seed(100)
    def train_step(self, data):
        # Unpack the data. Its structure depends on your model and
        # on what you pass to `fit()`.
        x, y = data

        with tf.GradientTape() as tape:
            y_pred = self(x, training=True)  # Forward pass
            # Compute the loss value
            # (the loss function is configured in `compile()`)
            loss = custom_mse(y, y_pred)
            # loss += self.losses

        # Compute gradients
        trainable_vars = self.trainable_variables
        gradients = tape.gradient(loss, trainable_vars)
        # Update weights
        self.optimizer.apply_gradients(zip(gradients, trainable_vars))

        # Compute our own metrics
        loss_tracker.update_state(loss)
        mae_metric.update_state(y, y_pred)
        return {"loss": loss_tracker.result(), "mae": mae_metric.result()}

    @property
    def metrics(self):
        # We list our `Metric` objects here so that `reset_states()` can be
        # called automatically at the start of each epoch
        # or at the start of `evaluate()`.
        # If you don't implement this property, you have to call
        # `reset_states()` yourself at the time of your choosing.
        return [loss_tracker, mae_metric]

# Construct and compile an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
my_model_beta = MyCustomModel(inputs, outputs)
my_model_beta.compile(optimizer="adam")

# Just use `fit` as usual

my_model_beta.fit(x, y, epochs=1, shuffle=False)
32/32 [==============================] - 0s 960us/step - loss: 0.2783 - mae: 0.4257

<tensorflow.python.keras.callbacks.History at 0x7ff7eda3d810>

终于,通过跳过在 compile() 中传递损失函数,而在 train_step 中手动完成所有计算内容,我们获得了与之前默认tf.losses.MSE完全一致的输出,这才是我们想要的结果。

总结一下,当我们在模型中想用自定义的损失函数,不能直接传入fit函数,而是需要在train_step中手动传入,完成计算过程。

到此这篇关于tensorflow2 自定义损失函数使用的隐藏坑的文章就介绍到这了,更多相关tensorflow2 自定义损失函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • TensorFlow自定义损失函数来预测商品销售量

    在预测商品销量时,如果预测多了(预测值比真实销量大),商家损失的是生产商品的成本:而如果预测少了(预测值比真实销量小),损失的则是商品的利润.因为一般商品的成本和商品的利润不会严格相等,比如如果一个商品的成本是1元,但是利润是10元,那么少预测一个就少挣10元:而多预测一个才少挣1元,所以如果神经网络模型最小化的是均方误差损失函数,那么很有可能此模型就无法最大化预期的销售利润. 为了最大化预期利润,需要将损失函数和利润直接联系起来,需要注意的是,损失函数定义的是损失,所以要将利润最大化,定义的损

  • TensorFlow损失函数专题详解

    一.分类问题损失函数--交叉熵(crossentropy) 交叉熵刻画了两个概率分布之间的距离,是分类问题中使用广泛的损失函数.给定两个概率分布p和q,交叉熵刻画的是两个概率分布之间的距离: 我们可以通过Softmax回归将神经网络前向传播得到的结果变成交叉熵要求的概率分布得分.在TensorFlow中,Softmax回归的参数被去掉了,只是一个额外的处理层,将神经网络的输出变成一个概率分布. 代码实现: import tensorflow as tf y_ = tf.constant([[1.

  • tensorflow 自定义损失函数示例代码

    这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变) 我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元. 如果我们用均方差来算的话,如果预估多一个,则损失一块钱,预估少一个,则损失9元钱(少赚的). 显然,我宁愿预估多了,也不想预估少了. 所以,我们就自己定义一个损失函数,用来分段地看,当yhat 比 y大时怎么样,当yhat比y小时怎么样. (yhat沿用吴恩达课堂中的叫法) import tensorflo

  • tensorflow 分类损失函数使用小记

    多分类损失函数 label.shape:[batch_size]; pred.shape: [batch_size, num_classes] 使用 tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred, from_logits=False, axis=-1) - y_true 真实值, y_pred 预测值 - from_logits,我的理解是,如果预测结果经过了softmax(单次预测结果满足和为1)就使用设为`Fal

  • tensorflow2 自定义损失函数使用的隐藏坑

    Keras的核心原则是逐步揭示复杂性,可以在保持相应的高级便利性的同时,对操作细节进行更多控制.当我们要自定义fit中的训练算法时,可以重写模型中的train_step方法,然后调用fit来训练模型. 这里以tensorflow2官网中的例子来说明: import numpy as np import tensorflow as tf from tensorflow import keras x = np.random.random((1000, 32)) y = np.random.rando

  • 在Python中合并字典模块ChainMap的隐藏坑【推荐】

    在Python中,当我们有两个字典需要合并的时候,可以使用字典的 update 方法,例如: a = {'a': 1, 'b': 2} b = {'x': 3, 'y': 4} a.update(b) print(a) 运行效果如下图所示: 然而,这个方法有一个问题--它会改变其中一个字典.如果我们不想改变原有的两个字典,那么我们必需要单独再创建一个字典: a = {'a': 1, 'b': 2} b = {'x': 3, 'y': 4} c = dict(a) c.update(b) prin

  • keras自定义损失函数并且模型加载的写法介绍

    keras自定义函数时候,正常在模型里自己写好自定义的函数,然后在模型编译的那行代码里写上接口即可.如下所示,focal_loss和fbeta_score是我们自己定义的两个函数,在model.compile加入它们,metrics里'accuracy'是keras自带的度量函数. def focal_loss(): ... return xx def fbeta_score(): ... return yy model.compile(optimizer=Adam(lr=0.0001), lo

  • Spring中使用自定义ThreadLocal存储导致的坑及解决

    目录 Spring自定义ThreadLocal存储导致的坑 一个容易想到的实现办法是使用ThreadLocal Threadlocal可能会产生内存泄露的问题及原理 为什么会产生内存泄露? JVM解决的办法 Spring自定义ThreadLocal存储导致的坑 Spring 中有时候我们需要存储一些和 Request 相关联的变量,例如用户的登陆有关信息等,它的生命周期和 Request 相同. 一个容易想到的实现办法是使用ThreadLocal public class SecurityCon

  • uniapp自定义验证码输入框并隐藏光标

    目录 一. 前言 二. 实现思路 三. 代码实现 四. 过程中遇到的问题 一. 前言 先看下使用场景效果图: 点击输入框唤起键盘,蓝框就相当于input的光标,验证码输入错误或者不符合格式要求会将字体以及边框改成红色提示,持续1s,然后清空数据,恢复原边框样式: 5位验证码输入完毕,点击页面其他位置,隐藏键盘:这时如果发现验证码有误,再次点击输入框又唤起键盘,也能正常删除数字(这里其实做的时候遇到了bug,再次聚焦不能删除错误数字,下文会讲到). 二. 实现思路 具体实现思路: 将input标签

  • 解决Keras 自定义层时遇到版本的问题

    在2.2.0版本前, from keras import backend as K from keras.engine.topology import Layer class MyLayer(Layer): def __init__(self, output_dim, **kwargs): self.output_dim = output_dim super(MyLayer, self).__init__(**kwargs) def build(self, input_shape): # 为该层

  • 详解MindSpore自定义模型损失函数

    目录 一.技术背景 二.MindSpore内置的损失函数 三.自定义损失函数 四.自定义其他算子 五.多层算子的应用 六.重定义reduction 一.技术背景 损失函数是机器学习中直接决定训练结果好坏的一个模块,该函数用于定义计算出来的结果或者是神经网络给出的推测结论与正确结果的偏差程度,偏差的越多,就表明对应的参数越差.而损失函数的另一个重要性在于会影响到优化函数的收敛性,如果损失函数的指数定义的太高,稍有参数波动就导致结果的巨大波动的话,那么训练和优化就很难收敛.一般我们常用的损失函数是M

  • 一小时学会TensorFlow2之自定义层

    目录 概述 Sequential Model & Layer 案例 数据集介绍 完整代码 概述 通过自定义网络, 我们可以自己创建网络并和现有的网络串联起来, 从而实现各种各样的网络结构. Sequential Sequential 是 Keras 的一个网络容器. 可以帮助我们将多层网络封装在一起. 通过 Sequential 我们可以把现有的层已经我们自己的层实现结合, 一次前向传播就可以实现数据从第一层到最后一层的计算. 格式: tf.keras.Sequential( layers=No

随机推荐