C++实现LeetCode(98.验证二叉搜索树)

[LeetCode] 98. Validate Binary Search Tree 验证二叉搜索树

Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than the node's key.
  • Both the left and right subtrees must also be binary search trees.

Example 1:

Input:
2
/ \
1   3
Output: true

Example 2:

    5
/ \
1   4
/ \
3   6
Output: false
Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value
is 5 but its right child's value is 4.

这道验证二叉搜索树有很多种解法,可以利用它本身的性质来做,即左<根<右,也可以通过利用中序遍历结果为有序数列来做,下面我们先来看最简单的一种,就是利用其本身性质来做,初始化时带入系统最大值和最小值,在递归过程中换成它们自己的节点值,用long代替int就是为了包括int的边界条件,代码如下:

C++ 解法一:

// Recursion without inorder traversal
class Solution {
public:
    bool isValidBST(TreeNode* root) {
        return isValidBST(root, LONG_MIN, LONG_MAX);
    }
    bool isValidBST(TreeNode* root, long mn, long mx) {
        if (!root) return true;
        if (root->val <= mn || root->val >= mx) return false;
        return isValidBST(root->left, mn, root->val) && isValidBST(root->right, root->val, mx);
    }
};

Java 解法一:

public class Solution {
    public boolean isValidBST(TreeNode root) {
        if (root == null) return true;
        return valid(root, Long.MIN_VALUE, Long.MAX_VALUE);
    }
    public boolean valid(TreeNode root, long low, long high) {
        if (root == null) return true;
        if (root.val <= low || root.val >= high) return false;
        return valid(root.left, low, root.val) && valid(root.right, root.val, high);
    }
}

这题实际上简化了难度,因为有的时候题目中的二叉搜索树会定义为左<=根<右,而这道题设定为一般情况左<根<右,那么就可以用中序遍历来做。因为如果不去掉左=根这个条件的话,那么下边两个数用中序遍历无法区分:

   20       20
/           \
20           20

它们的中序遍历结果都一样,但是左边的是 BST,右边的不是 BST。去掉等号的条件则相当于去掉了这种限制条件。下面来看使用中序遍历来做,这种方法思路很直接,通过中序遍历将所有的节点值存到一个数组里,然后再来判断这个数组是不是有序的,代码如下:

C++ 解法二:

// Recursion
class Solution {
public:
    bool isValidBST(TreeNode* root) {
        if (!root) return true;
        vector<int> vals;
        inorder(root, vals);
        for (int i = 0; i < vals.size() - 1; ++i) {
            if (vals[i] >= vals[i + 1]) return false;
        }
        return true;
    }
    void inorder(TreeNode* root, vector<int>& vals) {
        if (!root) return;
        inorder(root->left, vals);
        vals.push_back(root->val);
        inorder(root->right, vals);
    }
};

Java 解法二:

public class Solution {
    public boolean isValidBST(TreeNode root) {
        List<Integer> list = new ArrayList<Integer>();
        inorder(root, list);
        for (int i = 0; i < list.size() - 1; ++i) {
            if (list.get(i) >= list.get(i + 1)) return false;
        }
        return true;
    }
    public void inorder(TreeNode node, List<Integer> list) {
        if (node == null) return;
        inorder(node.left, list);
        list.add(node.val);
        inorder(node.right, list);
    }
}

下面这种解法跟上面那个很类似,都是用递归的中序遍历,但不同之处是不将遍历结果存入一个数组遍历完成再比较,而是每当遍历到一个新节点时和其上一个节点比较,如果不大于上一个节点那么则返回 false,全部遍历完成后返回 true。代码如下:

C++ 解法三:

class Solution {
public:
    bool isValidBST(TreeNode* root) {
        TreeNode *pre = NULL;
        return inorder(root, pre);
    }
    bool inorder(TreeNode* node, TreeNode*& pre) {
        if (!node) return true;
        bool res = inorder(node->left, pre);
        if (!res) return false;
        if (pre) {
            if (node->val <= pre->val) return false;
        }
        pre = node;
        return inorder(node->right, pre);
    }
};

当然这道题也可以用非递归来做,需要用到栈,因为中序遍历可以非递归来实现,所以只要在其上面稍加改动便可,代码如下:

C++ 解法四:

class Solution {
public:
    bool isValidBST(TreeNode* root) {
        stack<TreeNode*> s;
        TreeNode *p = root, *pre = NULL;
        while (p || !s.empty()) {
            while (p) {
                s.push(p);
                p = p->left;
            }
            p = s.top(); s.pop();
            if (pre && p->val <= pre->val) return false;
            pre = p;
            p = p->right;
        }
        return true;
    }
};

Java 解法四:

public class Solution {
    public boolean isValidBST(TreeNode root) {
        Stack<TreeNode> s = new Stack<TreeNode>();
        TreeNode p = root, pre = null;
        while (p != null || !s.empty()) {
            while (p != null) {
                s.push(p);
                p = p.left;
            }
            p = s.pop();
            if (pre != null && p.val <= pre.val) return false;
            pre = p;
            p = p.right;
        }
        return true;
    }
}

最后还有一种方法,由于中序遍历还有非递归且无栈的实现方法,称之为 Morris 遍历,可以参考博主之前的博客 Binary Tree Inorder Traversal,这种实现方法虽然写起来比递归版本要复杂的多,但是好处在于是 O(1) 空间复杂度,参见代码如下:

C++ 解法五:

class Solution {
public:
    bool isValidBST(TreeNode *root) {
        if (!root) return true;
        TreeNode *cur = root, *pre, *parent = NULL;
        bool res = true;
        while (cur) {
            if (!cur->left) {
                if (parent && parent->val >= cur->val) res = false;
                parent = cur;
                cur = cur->right;
            } else {
                pre = cur->left;
                while (pre->right && pre->right != cur) pre = pre->right;
                if (!pre->right) {
                    pre->right = cur;
                    cur = cur->left;
                } else {
                    pre->right = NULL;
                    if (parent->val >= cur->val) res = false;
                    parent = cur;
                    cur = cur->right;
                }
            }
        }
        return res;
    }
};

到此这篇关于C++实现LeetCode(98.验证二叉搜索树)的文章就介绍到这了,更多相关C++实现验证二叉搜索树内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++实现LeetCode(136.单独的数字)

    [LeetCode] 136.Single Number 单独的数字 Given a non-empty array of integers, every element appears twice except for one. Find that single one. Note: Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?

  • C++实现LeetCode(187.求重复的DNA序列)

    [LeetCode] 187. Repeated DNA Sequences 求重复的DNA序列 All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACGAATTCCG". When studying DNA, it is sometimes useful to identify repeated sequences within the DNA. Wr

  • C++实现LeetCode(96.独一无二的二叉搜索树)

    [LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树 Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Example: Input: 3 Output: 5 Explanation: Given n = 3, there are a total of 5 unique BST's: 1         3  

  • C++实现LeetCode(137.单独的数字之二)

    [LeetCode] 137. Single Number II 单独的数字之二 Given a non-empty array of integers, every element appears three times except for one, which appears exactly once. Find that single one. Note: Your algorithm should have a linear runtime complexity. Could you

  • C++实现LeetCode(91.解码方法)

    [LeetCode] 91. Decode Ways 解码方法 A message containing letters from A-Z is being encoded to numbers using the following mapping: 'A' -> 1 'B' -> 2 ... 'Z' -> 26 Given a non-empty string containing only digits, determine the total number of ways to

  • C++实现LeetCode(93.复原IP地址)

    [LeetCode] 93.Restore IP Addresses 复原IP地址 Given a string containing only digits, restore it by returning all possible valid IP address combinations. Example: Input: "25525511135" Output: ["255.255.11.135", "255.255.111.35"] 这

  • C++实现LeetCode(95.独一无二的二叉搜索树之二)

    [LeetCode] 95. Unique Binary Search Trees II 独一无二的二叉搜索树之二 Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ... n. Example: Input: 3 Output: [ [1,null,3,2], [3,2,null,1], [3,1,null,null,2], [2,1,3],

  • C++实现LeetCode(241.添加括号的不同方式)

    [LeetCode] 241. Different Ways to Add Parentheses 添加括号的不同方式 Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are +, - and *. Exampl

  • C++实现LeetCode(98.验证二叉搜索树)

    [LeetCode] 98. Validate Binary Search Tree 验证二叉搜索树 Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The ri

  • C++实现LeetCode(99.复原二叉搜索树)

    [LeetCode] 99. Recover Binary Search Tree 复原二叉搜索树 Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing its structure. Example 1: Input: [1,3,null,null,2]    1 / 3 \ 2 Output: [3,1,null,null,2]    3 / 1

  • C++实现LeetCode(109.将有序链表转为二叉搜索树)

    [LeetCode] 109.Convert Sorted List to Binary Search Tree 将有序链表转为二叉搜索树 Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST. For this problem, a height-balanced binary tree is defined as a binary

  • C++实现LeetCode(108.将有序数组转为二叉搜索树)

    [LeetCode] 108.Convert Sorted Array to Binary Search Tree 将有序数组转为二叉搜索树 Given an array where elements are sorted in ascending order, convert it to a height balanced BST. For this problem, a height-balanced binary tree is defined as a binary tree in wh

  • C++实现LeetCode(173.二叉搜索树迭代器)

    [LeetCode] 173.Binary Search Tree Iterator 二叉搜索树迭代器 Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the root node of a BST. Calling next() will return the next smallest number in the BST. Note: next() and

  • java基础二叉搜索树图文详解

    目录 概念 直接实践 准备工作:定义一个树节点的类,和二叉搜索树的类. 搜索二叉树的查找功能 搜索二叉树的插入操作 搜索二叉树删除节点的操作-难点 性能分析 总程序-模拟实现二叉搜索树 和java类集的关系 总结 概念 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:1.若它的左子树不为空,则左子树上所有节点的值都小于根结点的值.2.若它的右子树不为空,则右子树上所有节点的值都大于根结点的值.3.它的左右子树也分别为二叉搜索树 直接实践 准备工作:定义一个树节点的类,和二

  • Java数据结构之二叉搜索树详解

    目录 前言 性质 实现 节点结构 初始化 插入节点 查找节点 删除节点 最后 前言 今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不变,做完之后,我觉得这道题将二叉搜索树特性凸显的很好,首先需要查找指定节点,然后删除节点并且保持二叉搜索树性质不变,就想利用这个题目讲讲二叉搜索树. 二叉搜索树作为一个经典的数据结构,具有链表的快速插入与删除的特点,同时查询效率也很优秀,所以应用十分广泛,例如在文件系统和数据库系统一般会采用这种数

  • JavaScript二叉搜索树构建操作详解

    目录 前言 什么是二叉搜索树 构建一颗二叉搜索树 二叉搜索树的操作 向二叉搜索树中插入数据 查找二叉搜索树中的数据 删除二叉搜索树的某个节点 前驱后继节点 删除一个节点的三种情况 实现代码 完整代码 总结 前言 前面我们介绍了二叉树这个数据结构以及二叉树的遍历算法,这篇文章我们来学习一下一个特殊的二叉树——二叉搜索树(BST Binary Search Tree),也叫二叉排序树.二叉查找树. 什么是二叉搜索树 二叉搜索树首先它是一棵二叉树,而且还满足下面这些特质: 对于任何一个非空节点来说,它

随机推荐