Java多线程并发编程(互斥锁Reentrant Lock)

Java 中的锁通常分为两种:

通过关键字 synchronized 获取的锁,我们称为同步锁,上一篇有介绍到:Java 多线程并发编程 Synchronized 关键字。
java.util.concurrent(JUC)包里的锁,如通过继承接口 Lock 而实现的 ReentrantLock(互斥锁),继承 ReadWriteLock 实现的 ReentrantReadWriteLock(读写锁)。
本篇主要介绍 ReentrantLock(互斥锁)。

ReentrantLock(互斥锁)

ReentrantLock 互斥锁,在同一时间只能被一个线程所占有,在被持有后并未释放之前,其他线程若想获得该锁只能等待或放弃。

ReentrantLock 互斥锁是可重入锁,即某一线程可多次获得该锁。

公平锁 and 非公平锁

public ReentrantLock() {
    sync = new NonfairSync();
  }

  public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
  }

由 ReentrantLock 的构造函数可见,在实例化 ReentrantLock 的时候我们可以选择实例化一个公平锁或非公平锁,而默认会构造一个非公平锁。

公平锁与非公平锁区别在于竞争锁时的有序与否。公平锁可确保有序性(FIFO 队列),非公平锁不能确保有序性(即使也有 FIFO 队列)。

然而,公平是要付出代价的,公平锁比非公平锁要耗性能,所以在非必须确保公平的条件下,一般使用非公平锁可提高吞吐率。所以 ReentrantLock 默认的构造函数也是“不公平”的。

一般使用

DEMO1:

public class Test {

  private static class Counter {

    private ReentrantLock mReentrantLock = new ReentrantLock();

    public void count() {
      mReentrantLock.lock();
      try {
        for (int i = 0; i < 6; i++) {
          System.out.println(Thread.currentThread().getName() + ", i = " + i);
        }
      } finally {
	      // 必须在 finally 释放锁
        mReentrantLock.unlock();
      }
    }
  }

  private static class MyThread extends Thread {

    private Counter mCounter;

    public MyThread(Counter counter) {
      mCounter = counter;
    }

    @Override
    public void run() {
      super.run();
      mCounter.count();
    }
  }

  public static void main(String[] var0) {
    Counter counter = new Counter();
    // 注:myThread1 和 myThread2 是调用同一个对象 counter
    MyThread myThread1 = new MyThread(counter);
    MyThread myThread2 = new MyThread(counter);
    myThread1.start();
    myThread2.start();
  }
}

DEMO1 输出:

Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5
Thread-1, i = 0
Thread-1, i = 1
Thread-1, i = 2
Thread-1, i = 3
Thread-1, i = 4
Thread-1, i = 5

DEMO1 仅使用了 ReentrantLock 的 lock 和 unlock 来提现一般锁的特性,确保线程的有序执行。此种场景 synchronized 也适用。

锁的作用域

DEMO2:

public class Test {

  private static class Counter {

    private ReentrantLock mReentrantLock = new ReentrantLock();

    public void count() {
      for (int i = 0; i < 6; i++) {
        mReentrantLock.lock();
        // 模拟耗时,突出线程是否阻塞
        try{
          Thread.sleep(100);
          System.out.println(Thread.currentThread().getName() + ", i = " + i);
        } catch (InterruptedException e) {
          e.printStackTrace();
        } finally {
	        // 必须在 finally 释放锁
          mReentrantLock.unlock();
        }
      }
    }

    public void doOtherThing(){
      for (int i = 0; i < 6; i++) {
        // 模拟耗时,突出线程是否阻塞
        try {
          Thread.sleep(100);
        } catch (InterruptedException e) {
          e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
      }
    }
  }

  public static void main(String[] var0) {
    final Counter counter = new Counter();
    new Thread(new Runnable() {
      @Override
      public void run() {
        counter.count();
      }
    }).start();
    new Thread(new Runnable() {
      @Override
      public void run() {
        counter.doOtherThing();
      }
    }).start();
  }
}

DEMO2 输出:

Thread-0, i = 0
Thread-1 doOtherThing, i = 0
Thread-0, i = 1
Thread-1 doOtherThing, i = 1
Thread-0, i = 2
Thread-1 doOtherThing, i = 2
Thread-0, i = 3
Thread-1 doOtherThing, i = 3
Thread-0, i = 4
Thread-1 doOtherThing, i = 4
Thread-0, i = 5
Thread-1 doOtherThing, i = 5

DEMO3:

public class Test {

  private static class Counter {

    private ReentrantLock mReentrantLock = new ReentrantLock();

    public void count() {
      for (int i = 0; i < 6; i++) {
        mReentrantLock.lock();
        // 模拟耗时,突出线程是否阻塞
        try{
          Thread.sleep(100);
          System.out.println(Thread.currentThread().getName() + ", i = " + i);
        } catch (InterruptedException e) {
          e.printStackTrace();
        } finally {
          // 必须在 finally 释放锁
          mReentrantLock.unlock();
        }
      }
    }

    public void doOtherThing(){
      mReentrantLock.lock();
      try{
        for (int i = 0; i < 6; i++) {
          // 模拟耗时,突出线程是否阻塞
          try {
            Thread.sleep(100);
          } catch (InterruptedException e) {
            e.printStackTrace();
          }
          System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
        }
      }finally {
        mReentrantLock.unlock();
      }

    }
  }

  public static void main(String[] var0) {
    final Counter counter = new Counter();
    new Thread(new Runnable() {
      @Override
      public void run() {
        counter.count();
      }
    }).start();
    new Thread(new Runnable() {
      @Override
      public void run() {
        counter.doOtherThing();
      }
    }).start();
  }
}

DEMO3 输出:

Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5
Thread-1 doOtherThing, i = 0
Thread-1 doOtherThing, i = 1
Thread-1 doOtherThing, i = 2
Thread-1 doOtherThing, i = 3
Thread-1 doOtherThing, i = 4
Thread-1 doOtherThing, i = 5

结合 DEMO2 和 DEMO3 输出可见,锁的作用域在于 mReentrantLock,因为所来自于 mReentrantLock。

可终止等待

DEMO4:

public class Test {

  static final int TIMEOUT = 300;

  private static class Counter {

    private ReentrantLock mReentrantLock = new ReentrantLock();

    public void count() {
      try{
        //lock() 不可中断
        mReentrantLock.lock();
        // 模拟耗时,突出线程是否阻塞
        for (int i = 0; i < 6; i++) {
          long startTime = System.currentTimeMillis();
          while (true) {
            if (System.currentTimeMillis() - startTime > 100)
              break;
          }
          System.out.println(Thread.currentThread().getName() + ", i = " + i);
        }
      } finally {
        // 必须在 finally 释放锁
        mReentrantLock.unlock();
      }
    }

    public void doOtherThing(){
      try{
        //lockInterruptibly() 可中断,若线程没有中断,则获取锁
        mReentrantLock.lockInterruptibly();
        for (int i = 0; i < 6; i++) {
          // 模拟耗时,突出线程是否阻塞
          long startTime = System.currentTimeMillis();
          while (true) {
            if (System.currentTimeMillis() - startTime > 100)
              break;
          }
          System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
        }
      } catch (InterruptedException e) {
        System.out.println(Thread.currentThread().getName() + " 中断 ");
      }finally {
        // 若当前线程持有锁,则释放
        if(mReentrantLock.isHeldByCurrentThread()){
          mReentrantLock.unlock();
        }
      }
    }
  }

  public static void main(String[] var0) {
    final Counter counter = new Counter();
    new Thread(new Runnable() {
      @Override
      public void run() {
        counter.count();
      }
    }).start();
    Thread thread2 = new Thread(new Runnable() {
      @Override
      public void run() {
        counter.doOtherThing();
      }
    });
    thread2.start();
    long start = System.currentTimeMillis();
    while (true){
      if (System.currentTimeMillis() - start > TIMEOUT) {
        // 若线程还在运行,尝试中断
        if(thread2.isAlive()){
          System.out.println(" 不等了,尝试中断 ");
          thread2.interrupt();
        }
        break;
      }
    }
  }
}

DEMO4 输出:

Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
不等了,尝试中断
Thread-1 中断
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5

线程 thread2 等待 300ms 后 timeout,中断等待成功。

若把 TIMEOUT 改成 3000ms,输出结果:(正常运行)

Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5
Thread-1 doOtherThing, i = 0
Thread-1 doOtherThing, i = 1
Thread-1 doOtherThing, i = 2
Thread-1 doOtherThing, i = 3
Thread-1 doOtherThing, i = 4
Thread-1 doOtherThing, i = 5

定时锁

DEMO5:

public class Test {

  static final int TIMEOUT = 3000;

  private static class Counter {

    private ReentrantLock mReentrantLock = new ReentrantLock();

    public void count() {
      try{
        //lock() 不可中断
        mReentrantLock.lock();
        // 模拟耗时,突出线程是否阻塞
        for (int i = 0; i < 6; i++) {
          long startTime = System.currentTimeMillis();
          while (true) {
            if (System.currentTimeMillis() - startTime > 100)
              break;
          }
          System.out.println(Thread.currentThread().getName() + ", i = " + i);
        }
      } finally {
        // 必须在 finally 释放锁
        mReentrantLock.unlock();
      }
    }

    public void doOtherThing(){
      try{
        //tryLock(long timeout, TimeUnit unit) 尝试获得锁
        boolean isLock = mReentrantLock.tryLock(300, TimeUnit.MILLISECONDS);
        System.out.println(Thread.currentThread().getName() + " isLock:" + isLock);
        if(isLock){
          for (int i = 0; i < 6; i++) {
            // 模拟耗时,突出线程是否阻塞
            long startTime = System.currentTimeMillis();
            while (true) {
              if (System.currentTimeMillis() - startTime > 100)
                break;
            }
            System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
          }
        }else{
          System.out.println(Thread.currentThread().getName() + " timeout");
        }
      } catch (InterruptedException e) {
        System.out.println(Thread.currentThread().getName() + " 中断 ");
      }finally {
        // 若当前线程持有锁,则释放
        if(mReentrantLock.isHeldByCurrentThread()){
          mReentrantLock.unlock();
        }
      }
    }
  }

  public static void main(String[] var0) {
    final Counter counter = new Counter();
    new Thread(new Runnable() {
      @Override
      public void run() {
        counter.count();
      }
    }).start();
    Thread thread2 = new Thread(new Runnable() {
      @Override
      public void run() {
        counter.doOtherThing();
      }
    });
    thread2.start();
  }
}

DEMO5 输出:

Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
Thread-1 isLock:false
Thread-1 timeout
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5

tryLock() 尝试获得锁,tryLock(long timeout, TimeUnit unit) 在给定的 timeout 时间内尝试获得锁,若超时,则不带锁往下走,所以必须加以判断。

ReentrantLock or synchronized

ReentrantLock 、synchronized 之间如何选择?

ReentrantLock 在性能上 比 synchronized 更胜一筹。

ReentrantLock 需格外小心,因为需要显式释放锁,lock() 后记得 unlock(),而且必须在 finally 里面,否则容易造成死锁。
synchronized 隐式自动释放锁,使用方便。

ReentrantLock 扩展性好,可中断锁,定时锁,自由控制。
synchronized 一但进入阻塞等待,则无法中断等待。

(0)

相关推荐

  • java高并发锁的3种实现示例代码

    初级技巧 - 乐观锁 乐观锁适合这样的场景:读不会冲突,写会冲突.同时读的频率远大于写. 以下面的代码为例,悲观锁的实现: public Object get(Object key) { synchronized(map) { if(map.get(key) == null) { // set some values } return map.get(key); } } 乐观锁的实现: public Object get(Object key) { Object val = null; if((

  • java 并发中的原子性与可视性实例详解

    java 并发中的原子性与可视性实例详解 并发其实是一种解耦合的策略,它帮助我们把做什么(目标)和什么时候做(时机)分开.这样做可以明显改进应用程序的吞吐量(获得更多的CPU调度时间)和结构(程序有多个部分在协同工作).做过java Web开发的人都知道,Java Web中的Servlet程序在Servlet容器的支持下采用单实例多线程的工作模式,Servlet容器为你处理了并发问题. 原子性 原子是世界上的最小单位,具有不可分割性.比如 a=0:(a非long和double类型) 这个操作是不

  • java并发编程_线程池的使用方法(详解)

    一.任务和执行策略之间的隐性耦合 Executor可以将任务的提交和任务的执行策略解耦 只有任务是同类型的且执行时间差别不大,才能发挥最大性能,否则,如将一些耗时长的任务和耗时短的任务放在一个线程池,除非线程池很大,否则会造成死锁等问题 1.线程饥饿死锁 类似于:将两个任务提交给一个单线程池,且两个任务之间相互依赖,一个任务等待另一个任务,则会发生死锁:表现为池不够 定义:某个任务必须等待池中其他任务的运行结果,有可能发生饥饿死锁 2.线程池大小 注意:线程池的大小还受其他的限制,如其他资源池:

  • Java并发之嵌套管程锁死详解

    ·嵌套管程死锁是如何发生的 ·具体的嵌套管程死锁的例子 ·嵌套管程死锁 vs 死锁 嵌套管程锁死类似于死锁, 下面是一个嵌套管程锁死的场景: Thread 1 synchronizes on A Thread 1 synchronizes on B (while synchronized on A) Thread 1 decides to wait for a signal from another thread before continuing Thread 1 calls B.wait()

  • java ThreadPoolExecutor 并发调用实例详解

    java ThreadPoolExecutor 并发调用实例详解 概述 通常为了提供任务的处理速度,会使用一些并发模型,ThreadPoolExecutor中的invokeAll便是一种. 代码 package test.current; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.concurrent.Callable; import java.util

  • 详谈锁和监视器之间的区别_Java并发

    在面试中你可能遇到过这样的问题:锁(lock)和监视器(monitor)有什么区别? 嗯,要回答这个问题,你必须深入理解Java的多线程底层是如何工作的. 简短的答案是,锁为实现监视器提供必要的支持.详细答案如下. 锁(lock) 逻辑上锁是对象内存堆中头部的一部分数据.JVM中的每个对象都有一个锁(或互斥锁),任何程序都可以使用它来协调对对象的多线程访问.如果任何线程想要访问该对象的实例变量,那么线程必须拥有该对象的锁(在锁内存区域设置一些标志).所有其他的线程试图访问该对象的变量必须等到拥有

  • Java多线程并发编程(互斥锁Reentrant Lock)

    Java 中的锁通常分为两种: 通过关键字 synchronized 获取的锁,我们称为同步锁,上一篇有介绍到:Java 多线程并发编程 Synchronized 关键字. java.util.concurrent(JUC)包里的锁,如通过继承接口 Lock 而实现的 ReentrantLock(互斥锁),继承 ReadWriteLock 实现的 ReentrantReadWriteLock(读写锁). 本篇主要介绍 ReentrantLock(互斥锁). ReentrantLock(互斥锁)

  • Java多线程并发编程和锁原理解析

    这篇文章主要介绍了Java多线程并发编程和锁原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.前言 最近项目遇到多线程并发的情景(并发抢单&恢复库存并行),代码在正常情况下运行没有什么问题,在高并发压测下会出现:库存超发/总库存与sku库存对不上等各种问题. 在运用了 限流/加锁等方案后,问题得到解决. 加锁方案见下文. 二.乐观锁 & 悲观锁 1.乐观锁 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁

  • Java 多线程并发编程_动力节点Java学院整理

    一.多线程 1.操作系统有两个容易混淆的概念,进程和线程. 进程:一个计算机程序的运行实例,包含了需要执行的指令:有自己的独立地址空间,包含程序内容和数据:不同进程的地址空间是互相隔离的:进程拥有各种资源和状态信息,包括打开的文件.子进程和信号处理. 线程:表示程序的执行流程,是CPU调度执行的基本单位:线程有自己的程序计数器.寄存器.堆栈和帧.同一进程中的线程共用相同的地址空间,同时共享进进程锁拥有的内存和其他资源. 2.Java标准库提供了进程和线程相关的API,进程主要包括表示进程的jav

  • Java多线程并发编程 Volatile关键字

    volatile 关键字是一个神秘的关键字,也许在 J2EE 上的 JAVA 程序员会了解多一点,但在 Android 上的 JAVA 程序员大多不了解这个关键字.只要稍了解不当就好容易导致一些并发上的错误发生,例如好多人把 volatile 理解成变量的锁.(并不是) volatile 的特性: 具备可见性 保证不同线程对被 volatile 修饰的变量的可见性. 有一被 volatile 修饰的变量 i,在一个线程中修改了此变量 i,对于其他线程来说 i 的修改是立即可见的. 如: vola

  • Go语言并发编程 互斥锁详情

    目录 1.互斥锁Mutex 1.1 Mutex介绍 1.2 Mutex使用实例 2.读写锁RWMutex 2.1 RWMutex介绍 2.2 RWMutex使用实例 1.互斥锁Mutex 1.1 Mutex介绍 Go 语言的同步工具主要由 sync 包提供,互斥锁 (Mutex) 与读写锁 (RWMutex) 就是sync 包中的方法. 互斥锁可以用来保护一个临界区,保证同一时刻只有一个 goroutine 处于该临界区内.主要包括锁定(Lock方法)和解锁(Unlock方法)两个操作,首先对进

  • Java 多线程并发编程提高数据处理效率的详细过程

    工作场景中遇到这样一个需求:根据主机的 IP 地址联动更新其他模型的相关信息.需求很简单,只涉及一般的数据库联动查询以及更新操作,然而在编码实现过程中发现,由于主机的数量很多,导致循环遍历查询.更新时花费很长的时间,调用一次接口大概需要 30-40 min 时间才能完成操作. 因此,为了有效缩短接口方法的执行时间,便考虑使用多线程并发编程方法,利用多核处理器并行执行的能力,通过异步处理数据的方式,便可以大大缩短执行时间,提高执行效率. 这里使用可重用固定线程数的线程池 FixedThreadPo

  • Java多线程并发编程 Synchronized关键字

    synchronized 关键字解析 同步锁依赖于对象,每个对象都有一个同步锁. 现有一成员变量 Test,当线程 A 调用 Test 的 synchronized 方法,线程 A 获得 Test 的同步锁,同时,线程 B 也去调用 Test 的 synchronized 方法,此时线程 B 无法获得 Test 的同步锁,必须等待线程 A 释放 Test 的同步锁才能获得从而执行对应方法的代码. 综上,正确使用 synchronized 关键字可确保原子性. synchronized 关键字的特

  • 深入探究Java多线程并发编程的要点

    关键字synchronized synchronized关键可以修饰函数.函数内语句.无论它加上方法还是对象上,它取得的锁都是对象,而不是把一段代码或是函数当作锁. 1,当两个并发线程访问同一个对象object中的这个synchronized(this)同步代码块时,一段时间只能有一个线程得到执行,而另一个线程只有等当前线程执行完以后才能执行这块代码. 2,当一个线程访问object中的一个synchronized(this)同步代码块时,其它线程仍可以访问这个object中是其它非synchr

  • Java多线程并发编程 并发三大要素

    一.原子性 原子,一个不可再被分割的颗粒.原子性,指的是一个或多个不能再被分割的操作. int i = 1; // 原子操作 i++; // 非原子操作,从主内存读取 i 到线程工作内存,进行 +1,再把 i 写到朱内存. 虽然读取和写入都是原子操作,但合起来就不属于原子操作,我们又叫这种为"复合操作". 我们可以用synchronized 或 Lock 来把这个复合操作"变成"原子操作. 例子: private synchronized void increase

  • 对python多线程中互斥锁Threading.Lock的简单应用详解

    一.线程共享进程资源 每个线程互相独立,相互之间没有任何关系,但是在同一个进程中的资源,线程是共享的,如果不进行资源的合理分配,对数据造成破坏,使得线程运行的结果不可预期.这种现象称为"线程不安全". 实例如下: #-*- coding: utf-8 -*- import threading import time def test_xc(): f = open("test.txt","a") f.write("test_dxc&quo

随机推荐