python简单线程和协程学习心得(分享)

python中对线程的支持的确不够,不过据说python有足够完备的异步网络框架模块,希望日后能学习到,这里就简单的对python中的线程做个总结

threading库可用来在单独的线程中执行任意的python可调用对象。尽管此模块对线程相关操作的支持不够,但是我们还是能够用简单的线程来处理I/O操作,以减低程序响应时间。

from threading import Thread
import time

def countdown(n):
  while n > 0:
    print('T-minus:', n)
    n -= 1

t = Thread(target=countdown, args=(10,))
t.start() # 开启线程

time.sleep(2)

if t.is_alive() is True:
  print("停止线程...")
  t._stop() # 停止线程

start函数是用来开启线程的,_stop函数是用来停止线程的。为了防止在线程中进行I/O操作时出现阻塞等问题,运行一段时间之后,可以判断线程是否还存活,如果线程还存在就调用_stop()停止,防止阻塞(你可以将_stop函数封装到类中,我这里并没有这么做)。

当然,你可以调用ThreadPool线程池来处理,而不是手动创建线程。如果线程间不需要共享变量的话,使用线程还是很方便的,可以减少很多的麻烦操作以及省时。如果需要在线程间进行通信,我们可以使用队列来实现:

from queue import Queue
from threading import Thread

class kill:
  def terminate(self, t):
    if t.isAlive is True:
      t._stop()

def product(out_q):
  for i in range(5):
      out_q.put(i)

def consumer(in_q):
  for i in range(5):
    print(in_q.get())

q = Queue()
t1 = Thread(target=consumer, args=(q,))
t2 = Thread(target=product, args=(q,))
t1.start()
t2.start()

k = kill() # 查询线程是否终止,防止阻塞...
k.terminate(t1)
k.terminate(t2)

Queue实例会被所有的线程共享,同时它又拥有了所有所需要的锁,因此它们可以安全的在任意多的线程中共享。在这里要注意,不要再多线程中使用除了put(),get()方法之外的queue类的方法,因为在多线程环境中这是不可靠的!对于简单的小型的线程中数据的通信,可以使用队列来处理。如果是大型的数据需要交互通信,python提供了相关的模块你可以使用,具体的u need baidu.

所谓协程,其实就是在单线程的环境下的yield程序。

from collections import deque

def countdown(n):
  while n > 0:
    print("T-minus", n)
    yield # 返回之后下次直接从这里执行...相当于C#里面得yield return .
    n -= 1
  print("this is countdown!!!")

def countup(n):
  x = 0
  while x < n:
    print("Counting up", x)
    yield
    x += 1

class TaskScheduler:
  def __init__(self):
    self._task_queue = deque()

  def new_task(self, task):
    self._task_queue.append(task)

  def run(self):
    while self._task_queue:
      task = self._task_queue.popleft()
      try:
        next(task)
        self._task_queue.append(task)
      except StopIteration:
        pass

sche = TaskScheduler()
sche.new_task(countdown(10))
sche.new_task(countdown(5))
sche.new_task(countup(15))
sche.run()

在这里说下自己这段时间使用python的心得,python的确不错,但性能也是为人诟病,一开始学习python,我也是去做一些比较炫的程序,最起码听起来逼格高,比如使用python的自然语言处理来做情感分析以及最热的爬虫程序,还有做炫的数据分析图表。渐渐地,我就放下了那些,因为程序的重点不在那些,只要你会点基本的语法,看得懂官方文档就能够做出来,而程序代码的重点在性能,优化。最大程度的写出功能最完善,性能最优,结构最优美的程序,其实这就有点像是政治老师常说的"文化软实力",程序中的"软实力"应该是在程序中嵌入最适合的设计模式,做最完备的程序优化,采用最省性能的数据结构等。

以上这篇python简单线程和协程学习心得(分享)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 简单介绍Python的Tornado框架中的协程异步实现原理

    Tornado 4.0 已经发布了很长一段时间了, 新版本广泛的应用了协程(Future)特性. 我们目前已经将 Tornado 升级到最新版本, 而且也大量的使用协程特性. 很长时间没有更新博客, 今天就简单介绍下 Tornado 协程实现原理, Tornado 的协程是基于 Python 的生成器实现的, 所以首先来回顾下生成器. 生成器 Python 的生成器可以保存执行状态 并在下次调用的时候恢复, 通过在函数体内使用 yield 关键字 来创建一个生成器, 通过内置函数 next 或生

  • 简述Python中的进程、线程、协程

    进程.线程和协程之间的关系和区别也困扰我一阵子了,最近有一些心得,写一下. 进程拥有自己独立的堆和栈,既不共享堆,亦不共享栈,进程由操作系统调度. 线程拥有自己独立的栈和共享的堆,共享堆,不共享栈,线程亦由操作系统调度(标准线程是的). 协程和线程一样共享堆,不共享栈,协程由程序员在协程的代码里显示调度. 进程和其他两个的区别还是很明显的. 协程和线程的区别是:协程避免了无意义的调度,由此可以提高性能,但也因此,程序员必须自己承担调度的责任,同时,协程也失去了标准线程使用多CPU的能力. Pyt

  • python协程用法实例分析

    本文实例讲述了python协程用法.分享给大家供大家参考.具体如下: 把函数编写为一个任务,从而能处理发送给他的一系列输入,这种函数称为协程 def print_matchs(matchtext): print "looking for",matchtext while True: line = (yield) #用 yield语句并以表达式(yield)的形式创建协程 if matchtext in line: print line >>> matcher = pr

  • python并发编程之多进程、多线程、异步和协程详解

    最近学习python并发,于是对多进程.多线程.异步和协程做了个总结. 一.多线程 多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行.即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果. 多线程相当于一个并发(concunrrency)系统.并发系统一般同时执行多个任务.如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完

  • Tornado协程在python2.7如何返回值(实现方法)

    错误写法 class RemoteHandler(web.RequestHandler): @gen.coroutine def get(self): response = httpclient('http://www.baidu.com') self.write(response.body) @gen.coroutine def httpClient(url): result = yield httpclient.AsyncHTTPClient().fetch(url) return resu

  • 深入浅析python中的多进程、多线程、协程

    进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配.任务的调度. 程序是运行在系统上的具有某种功能的软件,比如说浏览器,音乐播放器等. 每次执行程序的时候,都会完成一定的功能,比如说浏览器帮我们打开网页,为了保证其独立性,就需要一个专门的管理和控制执行程序的数据结构--进程控制块. 进程就是一个程序在一个数据集上的一次动态执行过程. 进程一般由程序.数据集.进程控

  • python线程、进程和协程详解

    引言 解释器环境:python3.5.1 我们都知道python网络编程的两大必学模块socket和socketserver,其中的socketserver是一个支持IO多路复用和多线程.多进程的模块.一般我们在socketserver服务端代码中都会写这么一句: server = socketserver.ThreadingTCPServer(settings.IP_PORT, MyServer) ThreadingTCPServer这个类是一个支持多线程和TCP协议的socketserver

  • python 生成器协程运算实例

    一.yield运行方式 我们定义一个如下的生成器: def put_on(name): print("Hi {}, 货物来了,准备搬到仓库!".format(name)) while True: goods = yield print("货物[%s]已经被%s搬进仓库了."%(goods,name)) p = put_on("bigberg") #输出 G:\python\install\python.exe G:/python/untitled

  • Python协程的用法和例子详解

    从句法上看,协程与生成器类似,都是定义体中包含 yield 关键字的函数.可是,在协程中, yield 通常出现在表达式的右边(例如, datum = yield),可以产出值,也可以不产出 -- 如果 yield 关键字后面没有表达式,那么生成器产出 None. 协程可能会从调用方接收数据,不过调用方把数据提供给协程使用的是 .send(datum) 方法,而不是next(-) 函数. ==yield 关键字甚至还可以不接收或传出数据.不管数据如何流动, yield 都是一种流程控制工具,使用

  • python简单线程和协程学习心得(分享)

    python中对线程的支持的确不够,不过据说python有足够完备的异步网络框架模块,希望日后能学习到,这里就简单的对python中的线程做个总结 threading库可用来在单独的线程中执行任意的python可调用对象.尽管此模块对线程相关操作的支持不够,但是我们还是能够用简单的线程来处理I/O操作,以减低程序响应时间. from threading import Thread import time def countdown(n): while n > 0: print('T-minus:

  • Python的进程,线程和协程实例详解

    目录 相关介绍 实验环境 进程 多进程 用进程池对多进程进行操作 线程 使用_thread模块实现 使用threading模块实现 协程 使用asyncio模块实现 总结 相关介绍 Python是一种跨平台的计算机程序设计语言.是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言.最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的.大型项目的开发. 例如 实验环境 Python 3.x (面向对象的高级语言) Multiprocessin

  • 实例详解Python的进程,线程和协程

    目录 前言 前提条件 相关介绍 实验环境 进程 多进程 用进程池对多进程进行操作 线程 使用_thread模块实现 使用threading模块实现 协程 使用asyncio模块实现 总结 前言 本文用Python实例阐述了一些关于进程.线程和协程的概念,由于水平有限,难免出现错漏,敬请批评改正. 前提条件 熟悉Python基本语法熟悉Python操作进程.线程.协程的相关库 相关介绍 Python是一种跨平台的计算机程序设计语言.是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言.最

  • 一文搞懂Python中的进程,线程和协程

    目录 1.什么是并发编程 2.进程与多进程 3.线程与多线程 4.协程与多协程 5.总结 1.什么是并发编程 并发编程是实现多任务协同处理,改善系统性能的方式.Python中实现并发编程主要依靠 进程(Process):进程是计算机中的程序关于某数据集合的一次运行实例,是操作系统进行资源分配的最小单位 线程(Thread):线程被包含在进程之中,是操作系统进行程序调度执行的最小单位 协程(Coroutine):协程是用户态执行的轻量级编程模型,由单一线程内部发出控制信号进行调度 直接上一张图看看

  • Python异步编程之协程任务的调度操作实例分析

    本文实例讲述了Python异步编程之协程任务的调度操作.分享给大家供大家参考,具体如下: 我们知道协程是异步进行的,碰到IO阻塞型操作时需要调度其他任务,那么这个调度规则或者是算法是怎样的呢?现在有以下几个疑问: 1.多个任务准备好,需要运行时,优先执行哪一个? 2.一个任务运行时,如果别的任务准备好了,是否需要中断当前任务呢? 在网上找了很多资料,也无法找到相关的资料,于是编写了几个简单的程序,查看任务的执行过程. 根据Python的asyncio我们可以编写一个简单的程序: import a

  • 深入理解 Java、Kotlin、Go 的线程和协程

    前言 Go 语言比 Java 语言性能优越的一个原因,就是轻量级线程Goroutines(协程Coroutine).本篇文章深入分析下 Java 的线程和 Go 的协程. 协程是什么 协程并不是 Go 提出来的新概念,其他的一些编程语言,例如:Go.Python 等都可以在语言层面上实现协程,甚至是 Java,也可以通过使用扩展库来间接地支持协程. 当在网上搜索协程时,我们会看到: Kotlin 官方文档说「本质上,协程是轻量级的线程」. 很多博客提到「不需要从用户态切换到内核态」.「是协作式的

  • Python中Async语法协程的实现

    目录 前记 1.传统的Sync语法请求例子 2.异步的请求 3.基于生成器的协程 3.1生成器 3.2用生成器实现协程 前记 在io比较多的场景中, Async语法编写的程序会以更少的时间, 更少的资源来完成相同的任务, 这篇文章则是介绍了Python的Async语法的协程是如何实现的. 1.传统的Sync语法请求例子 还是一样, 在了解Async语法的实现之前, 先从一个Sync的语法例子开始, 现在假设有一个HTTP请求, 这个程序会通过这个请求获取对应的响应内容, 并打印出来, 代码如下:

  • python 单线程和异步协程工作方式解析

    在python3.4之后新增了asyncio模块,可以帮我们检测IO(只能是网络IO[HTTP连接就是网络IO操作]),实现应用程序级别的切换(异步IO).注意:asyncio只能发tcp级别的请求,不能发http协议. 异步IO:所谓「异步 IO」,就是你发起一个 网络IO 操作,却不用等它结束,你可以继续做其他事情,当它结束时,你会得到通知. 实现方式:单线程+协程实现异步IO操作. 异步协程用法 接下来让我们来了解下协程的实现,从 Python 3.4 开始,Python 中加入了协程的概

  • Python中gevent模块协程使用

    目录 背景 什么是协程? 什么是 gevent? 协程的例子 Q&A Q:gevent 无法捕获的耗时 A:猴子补丁 实践 异步 requests 请求 gevent 的锁 Tip 背景 因为 Python 线程的性能问题,在 Python 中使用多线程运行代码经常不能达到预期的效果.而实际开发中我们经常有高并发的需求,这就要求我们的代码在跑的更快的同时需要单位时间内执行更多的有效逻辑.减少无用的等待. 什么是协程? 我们可以认为线程是轻量级的进程,所以你也可以理解协程是轻量级的线程.协程即在一

随机推荐