Python中死锁的形成示例及死锁情况的防止

死锁示例
搞多线程的经常会遇到死锁的问题,学习操作系统的时候会讲到死锁相关的东西,我们用Python直观的演示一下。
死锁的一个原因是互斥锁。假设银行系统中,用户a试图转账100块给用户b,与此同时用户b试图转账200块给用户a,则可能产生死锁。
2个线程互相等待对方的锁,互相占用着资源不释放。

#coding=utf-8
import time
import threading
class Account:
  def __init__(self, _id, balance, lock):
    self.id = _id
    self.balance = balance
    self.lock = lock 

  def withdraw(self, amount):
    self.balance -= amount 

  def deposit(self, amount):
    self.balance += amount 

def transfer(_from, to, amount):
  if _from.lock.acquire():#锁住自己的账户
    _from.withdraw(amount)
    time.sleep(1)#让交易时间变长,2个交易线程时间上重叠,有足够时间来产生死锁
    print 'wait for lock...'
    if to.lock.acquire():#锁住对方的账户
      to.deposit(amount)
      to.lock.release()
    _from.lock.release()
  print 'finish...' 

a = Account('a',1000, threading.Lock())
b = Account('b',1000, threading.Lock())
threading.Thread(target = transfer, args = (a, b, 100)).start()
threading.Thread(target = transfer, args = (b, a, 200)).start()

防止死锁的加锁机制
问题:
你正在写一个多线程程序,其中线程需要一次获取多个锁,此时如何避免死锁问题。
解决方案:
在多线程程序中,死锁问题很大一部分是由于线程同时获取多个锁造成的。举个例子:一个线程获取了第一个锁,然后在获取第二个锁的 时候发生阻塞,那么这个线程就可能阻塞其他线程的执行,从而导致整个程序假死。 解决死锁问题的一种方案是为程序中的每一个锁分配一个唯一的id,然后只允许按照升序规则来使用多个锁,这个规则使用上下文管理器 是非常容易实现的,示例如下:

import threading
from contextlib import contextmanager

# Thread-local state to stored information on locks already acquired
_local = threading.local()

@contextmanager
def acquire(*locks):
  # Sort locks by object identifier
  locks = sorted(locks, key=lambda x: id(x))

  # Make sure lock order of previously acquired locks is not violated
  acquired = getattr(_local,'acquired',[])
  if acquired and max(id(lock) for lock in acquired) >= id(locks[0]):
    raise RuntimeError('Lock Order Violation')

  # Acquire all of the locks
  acquired.extend(locks)
  _local.acquired = acquired

  try:
    for lock in locks:
      lock.acquire()
    yield
  finally:
    # Release locks in reverse order of acquisition
    for lock in reversed(locks):
      lock.release()
    del acquired[-len(locks):]

如何使用这个上下文管理器呢?你可以按照正常途径创建一个锁对象,但不论是单个锁还是多个锁中都使用 acquire() 函数来申请锁, 示例如下:

import threading
x_lock = threading.Lock()
y_lock = threading.Lock()

def thread_1():
  while True:
    with acquire(x_lock, y_lock):
      print('Thread-1')

def thread_2():
  while True:
    with acquire(y_lock, x_lock):
      print('Thread-2')

t1 = threading.Thread(target=thread_1)
t1.daemon = True
t1.start()

t2 = threading.Thread(target=thread_2)
t2.daemon = True
t2.start()

如果你执行这段代码,你会发现它即使在不同的函数中以不同的顺序获取锁也没有发生死锁。 其关键在于,在第一段代码中,我们对这些锁进行了排序。通过排序,使得不管用户以什么样的顺序来请求锁,这些锁都会按照固定的顺序被获取。 如果有多个 acquire() 操作被嵌套调用,可以通过线程本地存储(TLS)来检测潜在的死锁问题。 假设你的代码是这样写的:

import threading
x_lock = threading.Lock()
y_lock = threading.Lock()

def thread_1():

  while True:
    with acquire(x_lock):
      with acquire(y_lock):
        print('Thread-1')

def thread_2():
  while True:
    with acquire(y_lock):
      with acquire(x_lock):
        print('Thread-2')

t1 = threading.Thread(target=thread_1)
t1.daemon = True
t1.start()

t2 = threading.Thread(target=thread_2)
t2.daemon = True
t2.start()

如果你运行这个版本的代码,必定会有一个线程发生崩溃,异常信息可能像这样:

Exception in thread Thread-1:
Traceback (most recent call last):
 File "/usr/local/lib/python3.3/threading.py", line 639, in _bootstrap_inner
  self.run()
 File "/usr/local/lib/python3.3/threading.py", line 596, in run
  self._target(*self._args, **self._kwargs)
 File "deadlock.py", line 49, in thread_1
  with acquire(y_lock):
 File "/usr/local/lib/python3.3/contextlib.py", line 48, in __enter__
  return next(self.gen)
 File "deadlock.py", line 15, in acquire
  raise RuntimeError("Lock Order Violation")
RuntimeError: Lock Order Violation
>>>

发生崩溃的原因在于,每个线程都记录着自己已经获取到的锁。 acquire() 函数会检查之前已经获取的锁列表, 由于锁是按照升序排列获取的,所以函数会认为之前已获取的锁的id必定小于新申请到的锁,这时就会触发异常。

讨论
死锁是每一个多线程程序都会面临的一个问题(就像它是每一本操作系统课本的共同话题一样)。根据经验来讲,尽可能保证每一个 线程只能同时保持一个锁,这样程序就不会被死锁问题所困扰。一旦有线程同时申请多个锁,一切就不可预料了。

死锁的检测与恢复是一个几乎没有优雅的解决方案的扩展话题。一个比较常用的死锁检测与恢复的方案是引入看门狗计数器。当线程正常 运行的时候会每隔一段时间重置计数器,在没有发生死锁的情况下,一切都正常进行。一旦发生死锁,由于无法重置计数器导致定时器 超时,这时程序会通过重启自身恢复到正常状态。

避免死锁是另外一种解决死锁问题的方式,在进程获取锁的时候会严格按照对象id升序排列获取,经过数学证明,这样保证程序不会进入 死锁状态。证明就留给读者作为练习了。避免死锁的主要思想是,单纯地按照对象id递增的顺序加锁不会产生循环依赖,而循环依赖是 死锁的一个必要条件,从而避免程序进入死锁状态。

下面以一个关于线程死锁的经典问题:“哲学家就餐问题”,作为本节最后一个例子。题目是这样的:五位哲学家围坐在一张桌子前,每个人 面前有一碗饭和一只筷子。在这里每个哲学家可以看做是一个独立的线程,而每只筷子可以看做是一个锁。每个哲学家可以处在静坐、 思考、吃饭三种状态中的一个。需要注意的是,每个哲学家吃饭是需要两只筷子的,这样问题就来了:如果每个哲学家都拿起自己左边的筷子, 那么他们五个都只能拿着一只筷子坐在那儿,直到饿死。此时他们就进入了死锁状态。 下面是一个简单的使用死锁避免机制解决“哲学家就餐问题”的实现:

import threading

# The philosopher thread
def philosopher(left, right):
  while True:
    with acquire(left,right):
       print(threading.currentThread(), 'eating')

# The chopsticks (represented by locks)
NSTICKS = 5
chopsticks = [threading.Lock() for n in range(NSTICKS)]

# Create all of the philosophers
for n in range(NSTICKS):
  t = threading.Thread(target=philosopher,
             args=(chopsticks[n],chopsticks[(n+1) % NSTICKS]))
  t.start()

最后,要特别注意到,为了避免死锁,所有的加锁操作必须使用 acquire() 函数。如果代码中的某部分绕过acquire 函数直接申请锁,那么整个死锁避免机制就不起作用了。

(0)

相关推荐

  • Python多线程编程(五):死锁的形成

    前一篇文章Python:使用threading模块实现多线程编程四[使用Lock互斥锁]我们已经开始涉及到如何使用互斥锁来保护我们的公共资源了,现在考虑下面的情况– 如果有多个公共资源,在线程间共享多个资源的时候,如果两个线程分别占有一部分资源并且同时等待对方的资源,这会引起什么问题? 死锁概念 所谓死锁: 是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程.

  • Python多线程编程(四):使用Lock互斥锁

    前面已经演示了Python:使用threading模块实现多线程编程二两种方式起线程和Python:使用threading模块实现多线程编程三threading.Thread类的重要函数,这两篇文章的示例都是演示了互不相干的独立线程,现在我们考虑这样一个问题:假设各个线程需要访问同一公共资源,我们的代码该怎么写? 复制代码 代码如下: ''' Created on 2012-9-8   @author: walfred @module: thread.ThreadTest3 '''  impor

  • Python实现脚本锁功能(同时只能执行一个脚本)

    1. 文件锁 脚本启动前检查特定文件是否存在,不存在就启动并新建文件,脚本结束后删掉特定文件. 通过文件的判断来确定脚本是否正在执行. 方法实现也比较简单,这里以python脚本为例 #coding=utf-8 # # 文件锁脚本测试 # import os #操作系统 import time lockfilepath = "/opt/lock.txt"; #判断文件是否存在 if os.path.exists(lockfilepath): #文件存在,说明脚本正在执行 print(&

  • python避免死锁方法实例分析

    本文实例讲述了python避免死锁方法.分享给大家供大家参考.具体分析如下: 当两个或者更多的线程在等待资源的时候就会产生死锁,两个线程相互等待. 在本文实例中 thread1 等待thread2释放block , thread2等待thtead1释放ablock,   避免死锁的原则: 1. 一定要以一个固定的顺序来取得锁,这个列子中,意味着首先要取得alock, 然后再去block 2. 一定要按照与取得锁相反的顺序释放锁,这里,应该先释放block,然后是alock import thre

  • python多线程threading.Lock锁用法实例

    本文实例讲述了python多线程threading.Lock锁的用法实例,分享给大家供大家参考.具体分析如下: python的锁可以独立提取出来 复制代码 代码如下: mutex = threading.Lock() #锁的使用 #创建锁 mutex = threading.Lock() #锁定 mutex.acquire([timeout]) #释放 mutex.release() 锁定方法acquire可以有一个超时时间的可选参数timeout.如果设定了timeout,则在超时后通过返回值

  • Python多线程编程(六):可重入锁RLock

    考虑这种情况:如果一个线程遇到锁嵌套的情况该怎么办,这个嵌套是指当我一个线程在获取临界资源时,又需要再次获取. 根据这种情况,代码如下: 复制代码 代码如下: ''' Created on 2012-9-8   @author: walfred @module: thread.ThreadTest6 '''    import threading  import time    counter = 0  mutex = threading.Lock()    class MyThread(thr

  • 简要讲解Python编程中线程的创建与锁的使用

    创建线程 创建线程的两种方法: 1,直接调用threading.Thread来构造thread对象,Thread的参数如下: class threading.Thread(group=None, target=None, name=None, args=(), kwargs={})  group为None: target为线程将要执行的功能函数: name为线程的名字,也可以在对象构造后调用setName()来设定: args为tuple类型的参数,可以为多个,如果只有一个也的使用tuple的形

  • python使用fcntl模块实现程序加锁功能示例

    本文实例讲述了python使用fcntl模块实现程序加锁功能.分享给大家供大家参考,具体如下: python 中引入给文件加锁的 fcntl模块 import fcntl 打开一个文件 ##当前目录下test文件要先存在,如果不存在会报错.或者以写的方式打开 f = open('./test') 对该文件加密: fcntl.flock(f,fcntl.LOCK_EX) 这样就对文件test加锁了,如果有其他进程对test文件加锁,则不能成功,会被阻塞,但不会退出程序. 解锁:fcntl.floc

  • python线程锁(thread)学习示例

    复制代码 代码如下: # encoding: UTF-8import threadimport time # 一个用于在线程中执行的函数def func():    for i in range(5):        print 'func'        time.sleep(1) # 结束当前线程    # 这个方法与thread.exit_thread()等价    thread.exit() # 当func返回时,线程同样会结束 # 启动一个线程,线程立即开始运行# 这个方法与threa

  • Python使用文件锁实现进程间同步功能【基于fcntl模块】

    本文实例讲述了Python使用文件锁实现进程间同步功能.分享给大家供大家参考,具体如下: 简介 在实际应用中,会出现这种应用场景:希望shell下执行的脚本对某些竞争资源提供保护,避免出现冲突.本文将通过fcntl模块的文件整体上锁机制来实现这种进程间同步功能. fcntl系统函数介绍 Linux系统提供了文件整体上锁(flock)和更细粒度的记录上锁(fcntl)功能,底层功能均可由fcntl函数实现. 首先来了解记录上锁.记录上锁是读写锁的一种扩展类型,它可用于有亲缘关系或无亲缘关系的进程间

随机推荐