Python科学计算之Pandas详解

起步

Pandas最初被作为金融数据分析工具而开发出来,因此 pandas 为时间序列分析提供了很好的支持。 Pandas 的名称来自于面板数据(panel data)和python数据分析 (data analysis) 。panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型。

在我看来,对于 Numpy 以及 Matplotlib ,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础。而Scipy当然是另一个主要的也十分出色的科学计算库。

安装与导入

通过pip进行安装: pip install pandas

导入:

import pandas as pd

Pandas的数据类型

Pandas基于两种数据类型: series 与 dataframe 。

Series

一个series是一个一维的数据类型,其中每一个元素都有一个标签。类似于Numpy中元素带标签的数组。其中,标签可以是数字或者字符串。

# coding: utf-8
import numpy as np
import pandas as pd

s = pd.Series([1, 2, 5, np.nan, 6, 8])
print s

输出:

0 1.0
1 2.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64

DataFrame

一个dataframe是一个二维的表结构。Pandas的dataframe可以存储许多种不同的数据类型,并且每一个坐标轴都有自己的标签。你可以把它想象成一个series的字典项。

创建一个 DateFrame:

#创建日期索引序列
dates = pd.date_range('20130101', periods=6)
#创建Dataframe,其中 index 决定索引序列,columns 决定列名
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
print df

输出:

   A  B  C  D
2013-01-01 -0.334482 0.746019 -2.205026 -0.803878
2013-01-02 2.007879 1.559073 -0.527997 0.950946
2013-01-03 -1.053796 0.438214 -0.027664 0.018537
2013-01-04 -0.208744 -0.725155 -0.395226 -0.268529
2013-01-05 0.080822 -1.215433 -0.785030 0.977654
2013-01-06 -0.126459 0.426328 -0.474553 -1.968056

字典创建 DataFrame

df2 = pd.DataFrame({ 'A' : 1.,
   'B' : pd.Timestamp('20130102'),
   'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
   'D' : np.array([3] * 4,dtype='int32'),
   'E' : pd.Categorical(["test","train","test","train"]),
   'F' : 'foo' })

输出:

 A  B C D E F
0 1 2013-01-02 1 3 test foo
1 1 2013-01-02 1 3 train foo
2 1 2013-01-02 1 3 test foo
3 1 2013-01-02 1 3 train foo

将文件数据导入Pandas

df = pd.read_csv("Average_Daily_Traffic_Counts.csv", header = 0)
df.head()

数据源可以是 英国政府数据 或 美国政府数据 来获取数据源。当然, Kaggle 是另一个好用的数据源。

选择/切片

# 选择单独的一列,返回 Serires,与 df.A 效果相当。
df['A']

# 位置切片
df[0:3]

# 索引切片
df['20130102':'20130104']

# 通过标签选择
df.loc[dates[0]]

# 对多个轴同时通过标签进行选择
df.loc[:,['A','B']]

# 获得某一个单元的数据
df.loc[dates[0],'A']
# 或者
df.at[dates[0],'A'] # 速度更快的做法

# 通过位置进行选择
df.iloc[3]

# 切片
df.iloc[3:5,0:2]

# 列表选择
df.iloc[[1,2,4],[0,2]]

# 获得某一个单元的数据
df.iloc[1,1]
# 或者
df.iat[1,1] # 更快的做法

# 布尔索引
df[df.A > 0]

# 获得大于零的项的数值
df[df > 0]

# isin 过滤
df2[df2['E'].isin(['two','four'])]

赋值

# 新增一列,根据索引排列
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
df['F'] = s1

# 缺省项
# 在 pandas 中使用 np.nan 作为缺省项的值。
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
df1.loc[dates[0]:dates[1],'E'] = 1

# 删除所有带有缺省项的行
df1.dropna(how='any')

# 填充缺省项
df1.fillna(value=5)

# 获得缺省项的布尔掩码
pd.isnull(df1)

观察操作

# 观察开头的数据
df.head()

# 观察末尾的数据
df.tail(3)

# 显示索引
df.index

# 显示列
df.columns

# 显示底层 numpy 结构
df.values

# DataFrame 的基本统计学属性预览
df.describe()
"""
  A  B  C  D
count 6.000000 6.000000 6.000000 6.000000 #数量
mean 0.073711 -0.431125 -0.687758 -0.233103 #平均值
std 0.843157 0.922818 0.779887 0.973118 #标准差
min -0.861849 -2.104569 -1.509059 -1.135632 #最小值
25% -0.611510 -0.600794 -1.368714 -1.076610 #正态分布 25%
50% 0.022070 -0.228039 -0.767252 -0.386188 #正态分布 50%
75% 0.658444 0.041933 -0.034326 0.461706 #正态分布 75%
max 1.212112 0.567020 0.276232 1.071804 #最大值
"""

# 转置
df.T

# 根据某一轴的索引进行排序
df.sort_index(axis=1, ascending=False)

# 根据某一列的数值进行排序
df.sort(columns='B')

统计

# 求平均值
df.mean()
"""
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64
"""

# 指定轴上的平均值
df.mean(1)

# 不同维度的 pandas 对象也可以做运算,它会自动进行对应,shift 用来做对齐操作。
s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
"""
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1
2013-01-04 3
2013-01-05 5
2013-01-06 NaN
Freq: D, dtype: float64
"""

# 对不同维度的 pandas 对象进行减法操作
df.sub(s, axis='index')
"""
   A  B  C D F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4 1
2013-01-04 -2.278445 -3.706771 -4.039575 2 0
2013-01-05 -5.424972 -4.432980 -4.723768 0 -1
2013-01-06 NaN NaN NaN NaN NaN
"""

函数应用

# 累加
df.apply(np.cumsum)

直方图

s = pd.Series(np.random.randint(0, 7, size=10))
s.value_counts()
"""
4 5
6 2
2 2
1 1
dtype: int64
String Methods
"""

字符处理

s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
s.str.lower()
"""
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
"""

合并

使用 concat() 连接 pandas 对象:

df = pd.DataFrame(np.random.randn(10, 4))
"""
  0  1  2  3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
"""

pieces = [df[:3], df[3:7], df[7:]]
pd.concat(pieces)
"""
  0  1  2  3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
"""

join 合并:

left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
pd.merge(left, right, on='key')
"""
 key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
"""

追加

在 dataframe 数据后追加行

df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
s = df.iloc[3]
df.append(s, ignore_index=True)

分组

分组常常意味着可能包含以下的几种的操作中一个或多个

  • 依据一些标准分离数据
  • 对组单独地应用函数
  • 将结果合并到一个数据结构中
df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
    'foo', 'bar', 'foo', 'foo'],
   'B' : ['one', 'one', 'two', 'three',
    'two', 'two', 'one', 'three'],
   'C' : np.random.randn(8),
   'D' : np.random.randn(8)})

# 对单个分组应用函数,数据被分成了 bar 组与 foo 组,分别计算总和。
df.groupby('A').sum()

# 依据多个列分组会构成一个分级索引
df.groupby(['A','B']).sum()
"""
   C  D
A B
bar one -1.814470 2.395985
 three -0.595447 0.166599
 two -0.392670 -0.136473
foo one -1.195665 -0.616981
 three 1.928123 -1.623033
 two 2.414034 1.600434
"""

数据透视表

df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
   'B' : ['A', 'B', 'C'] * 4,
   'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
   'D' : np.random.randn(12),
   'E' : np.random.randn(12)})

# 生成数据透视表
pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
"""
C  bar foo
A B
one A -0.773723 1.418757
 B -0.029716 -1.879024
 C -1.146178 0.314665
three A 1.006160 NaN
 B NaN -1.035018
 C 0.648740 NaN
two A NaN 0.100900
 B -1.170653 NaN
 C NaN 0.536826
"""

时间序列

pandas 拥有既简单又强大的频率变换重新采样功能,下面的例子从 1次/秒 转换到了 1次/5分钟:

rng = pd.date_range('1/1/2012', periods=100, freq='S')
ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
ts.resample('5Min', how='sum')
"""
2012-01-01 25083
Freq: 5T, dtype: int32
"""

# 本地化时区表示
rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
ts = pd.Series(np.random.randn(len(rng)), rng)
"""
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64
"""

ts_utc = ts.tz_localize('UTC')
"""
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64
"""

# 转换为周期
ps = ts.to_period()

# 转换为时间戳
ps.to_timestamp()

分类

df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

# 将 raw_grades 转换成 Categoricals 类型
df["grade"] = df["raw_grade"].astype("category")
df["grade"]
"""
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]
"""

# 重命名分类
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

# 根据分类的顺序对数据进行排序
df.sort("grade")
"""
 id raw_grade  grade
5 6   e very bad
1 2   b  good
2 3   b  good
0 1   a very good
3 4   a very good
4 5   a very good
"""

作图

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
ts.plot()

数据IO

# 从 csv 文件读取数据
pd.read_csv('foo.csv')

# 保存到 csv 文件
df.to_csv('foo.csv')

# 读取 excel 文件
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])

# 保存到 excel 文件
df.to_excel('foo.xlsx', sheet_name='Sheet1')

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能带来一定的帮助,如果有疑问大家可以留言交流。

(0)

相关推荐

  • Python 中pandas.read_excel详细介绍

    Python 中pandas.read_excel详细介绍 #coding:utf-8 import pandas as pd import numpy as np filefullpath = r"/home/geeklee/temp/all_gov_file/pol_gov_mon/downloads/1.xls" #filefullpath = r"/home/geeklee/temp/all_gov_file/pol_gov_mon/downloads/26368f3

  • python中pandas.DataFrame对行与列求和及添加新行与列示例

    本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧. 方法如下: 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A

  • Pandas探索之高性能函数eval和query解析

    Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.pandas提供了大量能使我们快速便捷地处理数据的函数和方法.你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一. 相较于 Python 的内置函数, Pandas 库为我们提供了一系列性能更高的数据处理函数,本节将向大家介绍 Pandas 库

  • 利用Python中的pandas库对cdn日志进行分析详解

    前言 最近工作工作中遇到一个需求,是要根据CDN日志过滤一些数据,例如流量.状态码统计,TOP IP.URL.UA.Referer等.以前都是用 bash shell 实现的,但是当日志量较大,日志文件数G.行数达数千万亿级时,通过 shell 处理有些力不从心,处理时间过长.于是研究了下Python pandas这个数据处理库的使用.一千万行日志,处理完成在40s左右. 代码 #!/usr/bin/python # -*- coding: utf-8 -*- # sudo pip instal

  • python中pandas.DataFrame排除特定行方法示例

    前言 大家在使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,关于python中pandas.DataFrame的基本操作,大家可以查看这篇文章. pandas.DataFrame排除特定行 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选. 但是如果我们只想要所有内容中不包含特定行的内容,却并没有一个isnotin()方法.我今天的工作就遇到了这样的需

  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    前言 最近在网上搜了许多关于pandas.DataFrame的操作说明,都是一些基础的操作,但是这些操作组合起来还是比较费时间去正确操作DataFrame,花了我挺长时间去调整BUG的.我在这里做一些总结,方便你我他.感兴趣的朋友们一起来看看吧. 一.创建DataFrame的简单操作: 1.根据字典创造: In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=

  • Python科学计算之Pandas详解

    起步 Pandas最初被作为金融数据分析工具而开发出来,因此 pandas 为时间序列分析提供了很好的支持. Pandas 的名称来自于面板数据(panel data)和python数据分析 (data analysis) .panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型. 在我看来,对于 Numpy 以及 Matplotlib ,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础.而Scipy当然是另一个主要的也十分出色的科学计

  • Python演化计算基准函数详解

    目录 基准函数定义 代码实现 调用方法 总结 基准函数是测试演化计算算法性能的函数集,由于大部分基准函数集都是C/C++编写,Python编写的基准函数比较少,因此本文实现了13个常用基准函数的Python版. 基准函数定义 代码实现 benchmark.py import numpy as np import copy """ Author : Robin_Hua update time : 2021.10.14 version : 1.0 ""&quo

  • python读写excel数据--pandas详解

    目录 一.读写excel数据 1.1 读: 1.2写: 二.举例 2.1 要求 2.2 实现 总结 一.读写excel数据 利用pandas可以很方便的读写excel数据 1.1 读: data_in = pd.read_excel('M2FENZISHI.xlsx') 1.2写: 首先要创建数据框 # example df = pd.DataFrame({'A':[0,1,2]}) writer = pd.ExcelWriter('test.xlsx') #name of excel file

  • Python科学计算包numpy用法实例详解

    本文实例讲述了Python科学计算包numpy用法.分享给大家供大家参考,具体如下: 1 数据结构 numpy使用一种称为ndarray的类似Matlab的矩阵式数据结构管理数据,比python的列表和标准库的array类更为强大,处理数据更为方便. 1.1 数组的生成 在numpy中,生成数组需要指定数据类型,默认是int32,即整数,可以通过dtype参数来指定,一般用到的有int32.bool.float32.uint32.complex,分别代表整数.布尔值.浮点型.无符号整数和复数 一

  • Python中numpy数组的计算与转置详解

    目录 前言 1.numpy数组与数的运算 2.numpy相同尺寸的数组运算 3.numpy不同尺寸的数组计算 4.numpy数组的转置 总结: 前言 本文主要讲述numpy数组的计算与转置,讲相同尺寸数组的运算与不同尺寸数组的运算,同时介绍数组转置的三种方法. numpy数组的操作比较枯燥,但是都很实用,在很多机器学习.深度学习算法中都会使用到,对numpy数组的一些操作. 1.numpy数组与数的运算 主要包括数组与数的加减乘除运算,废话不多说,看代码: import numpy as np

  • 最强Python可视化绘图库Plotly详解用法

    今天给大家分享一篇可视化干货,介绍的是功能强大的开源 Python 绘图库 Plotly,教你如何用超简单的(甚至只要一行)代码,绘制出更棒的图表. 我之前一直使用 matplotlib ,由于它复杂的语法,我已经"沉没"在里面太多的时间成本.这也导致我花费了不知多少个深夜,在 StackOverflow 上搜索如何"格式化日期"或"增加第二个Y轴". 但我们现在有一个更好的选择了 ,比如易于使用.文档健全.功能强大的开源 Python 绘图库

  • 六行python代码的爱心曲线详解

    前些日子在做绩效体系的时候,遇到了一件囧事,居然忘记怎样在Excel上拟合正态分布了,尽管在第二天重新拾起了Excel中那几个常见的函数和图像的做法,还是十分的惭愧.实际上,当时有效偏颇了,忽略了问题的本质,解决数据分析和可视化问题,其实也是Python的拿手好戏. 例如,画出指定区间的一个多项式函数: Python 代码如下: import numpy as np import matplotlib.pyplot as plt X = np.linspace(-4, 4, 1024) Y =

  • Python Lambda函数使用总结详解

    这篇文章主要介绍了Python Lambda函数使用总结详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 lambda表达式是一种匿名函数,对应python中的自定义函数def,是定义某个函数时比较高级的一种写法.作为python初学者,本文整理了lambda的一些基本用法和特点. lambda和def的对应关系 定义func函数,计算给定数x的平方 def func(x): return x*x 等价于 func = lambda x: x

  • python 线性回归分析模型检验标准--拟合优度详解

    建立完回归模型后,还需要验证咱们建立的模型是否合适,换句话说,就是咱们建立的模型是否真的能代表现有的因变量与自变量关系,这个验证标准一般就选用拟合优度. 拟合优度是指回归方程对观测值的拟合程度.度量拟合优度的统计量是判定系数R^2.R^2的取值范围是[0,1].R^2的值越接近1,说明回归方程对观测值的拟合程度越好:反之,R^2的值越接近0,说明回归方程对观测值的拟合程度越差. 拟合优度问题目前还没有找到统一的标准说大于多少就代表模型准确,一般默认大于0.8即可 拟合优度的公式:R^2 = 1

  • python数据分析工具之 matplotlib详解

    不论是数据挖掘还是数学建模,都免不了数据可视化的问题.对于 Python 来说,matplotlib 是最著名的绘图库,它主要用于二维绘图,当然也可以进行简单的三维绘图.它不但提供了一整套和 Matlab 相似但更为丰富的命令,让我们可以非常快捷地用 python 可视化数据. matplotlib基础 # 安装 pip install matplotlib 两种绘图风格: MATLAB风格: 基本函数是 plot,分别取 x,y 的值,然后取到坐标(x,y)后,对不同的连续点进行连线. 面向对

随机推荐