Python 中的 Counter 模块及使用详解(搞定重复计数)

文章目录 参考描述Counter 模块Counter() 类Counter() 对象字典有序性KeyError魔术方法 \_\_missing\_\_ update() 方法 Counter 对象的常用方法most_common()elements()total()subtract() Counter 对象间的运算加法运算减法运算并集运算交集运算单目运算 Counter 对象间的比较>==

参考

项目 描述
Python 标准库 DougHellmann  / 刘炽 等 
搜索引擎 Bing
Python 官方文档 collections — 容器数据类型

描述

项目 描述
Python 解释器 3.10.6

Counter 模块

在 Python 的 collections 模块中,有一个很常用的模块就是 Counter。Counter 是一个简单的计数器,用于统计某些可哈希对象的数量。它以字典的形式存储元素和它们的计数。

Counter() 类

Counter() 能够对传入给该类的参数按照一定规则进行计数,并将计数对象与计数结果作为键值对以字典的形式进行结果的返回。

Counter(iterable=None, /, **kwds)

举个栗子

from collections import Counter
# 返回一个空的 Counter 对象
cnt = Counter()
print(cnt)

# 将可迭代对象(字符串)作为参数
cnt = Counter('Hello World')
print(cnt)

# 将可迭代对象(列表)作为参数
cnt = Counter(['a', 'a', 'b', 'd', 'c', 'd'])
print(cnt)

# 使用可迭代对象(字典)作为参数
cnt = Counter({'a': 1, 'b': 2, 'd': 3, 'c': 2})
print(cnt)

# 使用关键字参数
cnt = Counter(a=1, b=2, d=3, c=2)
print(cnt)

执行效果

Counter()
Counter({'l': 3, 'o': 2, 'H': 1, 'e': 1, ' ': 1, 'W': 1, 'r': 1, 'd': 1})
Counter({'a': 2, 'd': 2, 'b': 1, 'c': 1})
Counter({'d': 3, 'b': 2, 'c': 2, 'a': 1})
Counter({'d': 3, 'b': 2, 'c': 2, 'a': 1})

Counter() 对象

字典

Counter() 返回的结果为一个字典,它拥有普通字典的大部分方法。在大多数情况下,你可以像操作字典一样操作 Counter 对象。对此,请参考如下示例:

from collections import Counter
cnt = Counter('Hello World')
print(cnt)

# 输出 Counter 对象中的键值对列表
print(cnt.items())

# 移除 Counter 对象中的最后一个键值对
print(cnt.popitem())
print(cnt)

# 输出 Counter 中键 l 对应的值
print(cnt['l'])

执行结果

Counter({'l': 3, 'o': 2, 'H': 1, 'e': 1, ' ': 1, 'W': 1, 'r': 1, 'd': 1})
dict_items([('H', 1), ('e', 1), ('l', 3), ('o', 2), (' ', 1), ('W', 1), ('r', 1), ('d', 1)])
('d', 1)
Counter({'l': 3, 'o': 2, 'H': 1, 'e': 1, ' ': 1, 'W': 1, 'r': 1})
3

有序性

Python 中的字典是无序的,无序的 的含义并不是说字典中的键值对没有顺序,而是指字典中的键值对的顺序是不可预测的。对此,请参考如下示例:

d = {'a': 1, 'b': 2, 'c': 3}
for key in d:
    print(key)

该示例的输出结果可能是:

a
b
c

也可能是:

b
c
a

当然还存在其他可能,这里就不一一列举了。

Python 官方对 Python 3.6 版本中的字典进行了优化,使其能够记住键值对插入的顺序。此后,字典显得不那么凌乱了(字典中的键值对的顺序变得可以预测了)。

KeyError

在 Python 的内置字典中,若尝试访问不存在的键,Python 将抛出 KeyError 异常错误。对此,请参考如下示例:

d = dict([('a', 1), ('b', 2), ('c', 3)])
print(d)

# 尝试访问字典 d 中不存在的键
print(d['d'])

执行效果

Traceback (most recent call last):
  File "C:\main.py", line 5, in <module>
    print(d['d'])
KeyError: 'd'
{'a': 1, 'b': 2, 'c': 3}

同样的场景。这一次,我们让 Counter 作为主角。

from collections import Counter
cnt = Counter({'a': 1, 'b': 2, 'c': 3})
print(cnt)

# 尝试访问 Counter 中不存在的键
print(cnt['d'])

执行效果

访问 Counter 对象中不存在的键时,并不会抛出 KeyError 异常,而是返回默认计数值 0

Counter({'c': 3, 'b': 2, 'a': 1})
0

魔术方法 __missing__

__missing__() 是 Python 中的一个特殊方法,用于处理通过键访问字典中的值时键不存在时的情况。
当我们使用字典的索引来访问一个不存在的键时,Python 将会调用特殊方法 __missing__() 来尝试返回一个合适的值。若未实现 __missing__() 方法,Python 将会抛出 KeyError 异常。对此,请参考如下示例:

# 创建一个字典对象,该对象继承自 Python 内置的 dict 对象
class MyDict(dict):
    def __missing__(self, key):
        return 0

# 实例化 MyDict() 对象
myDict = MyDict()
# 尝试访问 myDict 对象中不存在的键 a
print(myDict['a'])

执行效果

0

update() 方法

Counter 对象与 dict 对象同样实现了 update() 方法。使用 update() 方法能够将作为参数的字典合并到调用该方法的 dict 对象中。不同的是,dict 对象的 update() 方法在遇到具有相同的键时,将会对该键对应的值执行 覆盖 操作。而 Counter 对象的 update() 方法在遇到具有相同的键时,将会对该键对应的值执行 叠加 操作。对此,请参考如下示例:

from collections import Counter
# Python 中内置的 dict 对象
d = dict([('a', 1), ('b', 2), ('c', 3)])
print(d)

d.update({'a': 4})
print(d)

print()

# Counter 对象
cnt = Counter({'a': 1, 'b': 2, 'c': 3})
print(cnt)

cnt.update({'a': 4})
print(cnt)

执行效果

{'a': 1, 'b': 2, 'c': 3}
{'a': 4, 'b': 2, 'c': 3}

Counter({'c': 3, 'b': 2, 'a': 1})
Counter({'a': 5, 'c': 3, 'b': 2})

Counter 对象的常用方法

most_common()

most_common() 方法将返回一个列表,列表中的元素均为 Counter 对象中的键值对组成的元组。元组在列表中的顺序取决于计数值(键值对中的值)的大小。计数值更大的元组将位于列表的前端,计数值相等的元组将按照它们首次在列表中出现的顺序进行排列(先出现的元组将更靠近列表的前端)。
most_common() 默认将使用 Counter 对象中所有的键值对组成的元组作为返回列表中的元素。你可以通过向该方法提供一个数值,该数值将指定放回的列表中的元素的数量。

举个栗子

from collections import Counter
cnt = Counter({'a': 1, 'b': 2, 'c': 3})
print(cnt)

print()

print(cnt.most_common())
# 返回由 Counter 中计数值最大的两个
# 键值对构成的元组所组成的列表
print(cnt.most_common(2))
# 返回由 Counter 中计数值最大的
# 键值对构成的元组所组成的列表
print(cnt.most_common(1))

执行效果

Counter({'c': 3, 'b': 2, 'a': 1})

[('c', 3), ('b', 2), ('a', 1)]
[('c', 3), ('b', 2)]
[('c', 3)]

elements()

elements() 方法将返回一个以 Counter 对象中的键为元素的迭代器,其中每个元素将重复出现计数值所指定的次数。

迭代器中的元素将存在如下特点:

  • 元素将会按照其首次添加到 Counter 对象中的顺序进行返回。
  • 某个键对应的计数值小于一,那么该键将不会作为元素出现在 element() 方法返回的迭代器中。

举个栗子

from collections import Counter
cnt = Counter({'a': 1, 'b': 2, 'c': 3, 'd': -4})
print(cnt)

print()

print(list(cnt.elements()))

执行效果

Counter({'c': 3, 'b': 2, 'a': 1, 'd': -4})

['a', 'b', 'b', 'c', 'c', 'c']

total()

total() 方法将返回 Counter 对象中,所有计数值累加后得到的结果。对此,请参考如下示例:

from collections import Counter
cnt = Counter({'a': 1, 'b': 2, 'c': 3, 'd': -4})
cnt1 = Counter('Hello World')
print(cnt.total())
print(cnt1.total())

执行效果

2
11

subtract()

该方法的效果与 Counter 对象的 update() 方法类似。如果说 update() 方法执行的是 操作,那么 subtract() 方法执行的则是 操作。对此,请参考如下示例:

from collections import Counter
cnt = Counter({'a': 1, 'b': 2, 'c': 3, 'd': -4})

cnt.subtract({'a': 0, 'b': 1, 'd': -11})
print(cnt)

执行效果

Counter({'d': 7, 'c': 3, 'a': 1, 'b': 1})

Counter 对象间的运算

注:

本部分内容中讲解到的运算符仅能在 Python 3.3 及以后版本中正常使用。

加法运算

在 Python 的 Counter 模块中,两个 Counter 对象可以相加,相加后将返回一个新的 Counter 对象,其中每个元素的计数是两个原始 Counter 对象中该元素计数的总和。可以通过使用加法运算符来执行此操作。对此,请参考如下示例:

from collections import Counter

cnt = Counter('Hello')
cnt1 = Counter('World')

print(cnt)
print(cnt1)
print(cnt + cnt1)

执行效果

Counter({'l': 2, 'H': 1, 'e': 1, 'o': 1})
Counter({'W': 1, 'o': 1, 'r': 1, 'l': 1, 'd': 1})
Counter({'l': 3, 'o': 2, 'H': 1, 'e': 1, 'W': 1, 'r': 1, 'd': 1})

注:

在 Counter 对象间的运算过程中,对于 Counter 中不存在的键,其计数值为零。

减法运算

在 Python 的 Counter 模块中,可以使用减法运算符来对两个 Counter 对象进行减法运算,即将左侧 Counter 对象中的计数器值减去右侧 Counter 对象中相同键的计数器值,最后返回一个新的 Counter 对象。对此,请参考如下示例:

from collections import Counter

cnt = Counter('cook')
cnt1 = Counter('coder')

print(cnt)
print(cnt1)
print(cnt - cnt1)

执行效果

Counter({'o': 2, 'c': 1, 'k': 1})
Counter({'c': 1, 'o': 1, 'd': 1, 'e': 1, 'r': 1})
Counter({'o': 1, 'k': 1})

注:

在 Counter 对象间的运算过程中,对于 Counter 中不存在的键,其计数值为零。

并集运算

Counter 对象之间的并集运算是指两个 Counter 对象按照键的并集进行运算,返回的结果是一个新的 Counter 对象,其中包含的键和值均为 原始 Counter 对象中存在的键及其对应的最大值。对此,请参考如下示例:

from collections import Counter

cnt = Counter('Hello')
cnt1 = Counter('World')

print(cnt)
print(cnt1)
print(cnt | cnt1)

执行效果

Counter({'l': 2, 'H': 1, 'e': 1, 'o': 1})
Counter({'W': 1, 'o': 1, 'r': 1, 'l': 1, 'd': 1})
Counter({'l': 2, 'H': 1, 'e': 1, 'o': 1, 'W': 1, 'r': 1, 'd': 1})

交集运算

Counter 对象之间的交集运算是指两个 Counter 对象按照键的交集进行运算,返回的结果是一个新的 Counter 对象,其中包含的键和值均为 原始 Counter 对象中共同拥有的键及其对应的最小值。对此,请参考如下示例:

from collections import Counter

cnt = Counter('Hello')
cnt1 = Counter('World')

print(cnt)
print(cnt1)
print(cnt & cnt1)

执行效果

Counter({'l': 2, 'H': 1, 'e': 1, 'o': 1})
Counter({'W': 1, 'o': 1, 'r': 1, 'l': 1, 'd': 1})
Counter({'l': 1, 'o': 1})

单目运算

单目运算指的是表达式中存在单目运算符的运算操作。存在两种单目运算符,即单目减法运算符与单目加法运算符。无论是单目减法运算符还是单目加法运算符,它们的操作对象均为 Counter 对象中的计数值。
在对 Counter 对象进行单目运算后,将返回一个由大于零的计数值相关的键值对组成的 Counter 对象。对此,请参考如下示例:

from collections import Counter

cnt = Counter({'a': 4, 'b': 3, 'd': 0, 'c': -5})
print(+cnt)
print(-cnt)

执行效果

Counter({'a': 4, 'b': 3})
Counter({'c': 5})

Counter 对象间的比较

Python 3.10 版本开始,Counter 对象间开始支持常见的比较运算符,这些运算符有:

  • <
  • <=
  • >
  • >=
  • ==
  • !=

这里以 >== 为例进行讲解。

>

> 的左侧的 Counter 对象的键对应的计数值均大于该符号右侧的 Counter 对象中相同的键(对于 Counter 中不存在的键,其计数值为零)对应的计数值时,比较结果为 True。否则为 False。对此,请参考如下示例:

from collections import Counter

cnt = Counter({'a': 4, 'b': 3, 'd': 7, 'c': 5})
cnt1 = Counter({'c': 3, 'd': 2, 'b': 6, 'a': 4})
cnt2 = Counter({'c': 4, 'd': 6, 'b': 2, 'a': 3})

print(cnt > cnt1)
print(cnt > cnt2)

执行效果

False
True

==

== 的左侧的 Counter 对象的键对应的计数值均等于该符号右侧的 Counter 对象中相同的键(对于 Counter 中不存在的键,其计数值为零)对应的计数值时,比较结果为 True。否则为 False。对此,请参考如下示例:

from collections import Counter

cnt = Counter({'a': 3, 'b': 2, 'd': 6, 'c': 4})
cnt1 = Counter({'c': 3, 'd': 2, 'b': 6, 'a': 4})
cnt2 = Counter({'c': 4, 'd': 6, 'b': 2, 'a': 3})

print(cnt == cnt1)
print(cnt == cnt2)

执行效果

False
True

到此这篇关于Python 中的 Counter 模块及使用详解(搞定重复计数)的文章就介绍到这了,更多相关Python Counter 模块内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python 中的 Counter 模块及使用详解(搞定重复计数)

    文章目录 参考描述Counter 模块Counter() 类Counter() 对象字典有序性KeyError魔术方法 \_\_missing\_\_ update() 方法 Counter 对象的常用方法most_common()elements()total()subtract() Counter 对象间的运算加法运算减法运算并集运算交集运算单目运算 Counter 对象间的比较>== 参考 项目 描述 Python 标准库 DougHellmann 著 / 刘炽 等 译 搜索引擎 Bing

  • python中yaml配置文件模块的使用详解

    简述 和GNU一样,YAML是一个递归着说"不"的名字.不同的是,GNU对UNIX说不,YAML说不的对象是XML. YAML不是XML. 为什么不是XML呢?因为: YAML的可读性好. YAML和脚本语言的交互性好. YAML使用实现语言的数据类型. YAML有一个一致的信息模型. YAML易于实现. 上面5条也就是XML不足的地方.同时,YAML也有XML的下列优点: YAML可以基于流来处理: YAML表达能力强,扩展性好. 总之,YAML试图用一种比XML更敏捷的方式,来完成

  • Python中 Global和Nonlocal的用法详解

    nonlocal 和 global 也很容易混淆.简单记录下自己的理解. 解释 global 总之一句话,作用域是全局的,就是会修改这个变量对应地址的值. global 语句是一个声明,它适用于整个当前代码块. 这意味着列出的标识符将被解释为全局变量. 尽管自由变量可能指的是全局变量而不被声明为全局变量. global 语句中列出的名称不得用于该全局语句之前的文本代码块中. global 语句中列出的名称不能定义为形式参数,也不能在 for 循环控制目标. class 定义.函数定义. impo

  • python中import reload __import__的区别详解

    import 作用:导入/引入一个python标准模块,其中包括.py文件.带有__init__.py文件的目录(自定义模块). import module_name[,module1,...] from module import *|child[,child1,...] 注意:多次重复使用import语句时,不会重新加载被指定的模块,只是把对该模块的内存地址给引用到本地变量环境. 实例: pythontab.py #!/usr/bin/env python #encoding: utf-8

  • Python中__init__.py文件的作用详解

    __init__.py 文件的作用是将文件夹变为一个Python模块,Python 中的每个模块的包中,都有__init__.py 文件. 通常__init__.py 文件为空,但是我们还可以为它增加其他的功能.我们在导入一个包时,实际上是导入了它的__init__.py文件.这样我们可以在__init__.py文件中批量导入我们所需要的模块,而不再需要一个一个的导入. # package # __init__.py import re import urllib import sys impo

  • 对python中的argv和argc使用详解

    主要问题 为什么argv中第一个,即index=0的内容就是文件名? python中argc是用什么实现的? 概念解释 argc:argument counter,命令行参数个数 argv:argument vector,命令行参数向量(内容) 通过代码理解含义 创建一个文件arg_exam.py,其中内容如下: # argv import sys for i in sys.argv: print i # argc argc = len(sys.argv) print argc 在shell中运

  • python中selenium库的基本使用详解

    什么是selenium selenium 是一个用于Web应用程序测试的工具.Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.支持的浏览器包括IE(7, 8, 9, 10, 11),Mozilla Firefox,Safari,Google Chrome,Opera等.selenium 是一套完整的web应用程序测试系统,包含了测试的录制(selenium IDE),编写及运行(Selenium Remote Control)和测试的并行处理(Selenium Grid). S

  • Python 中闭包与装饰器案例详解

    项目github地址:bitcarmanlee easy-algorithm-interview-and-practice 1.Python中一切皆对象 这恐怕是学习Python最有用的一句话.想必你已经知道Python中的list, tuple, dict等内置数据结构,当你执行: alist = [1, 2, 3] 时,你就创建了一个列表对象,并且用alist这个变量引用它: 当然你也可以自己定义一个类: class House(object): def __init__(self, are

  • python中subprocess实例用法及知识点详解

    1.subprocess这个模块来产生子进程,并且可以连接到子进程的标准输入.输出.错误中,还可以获得子进程的返回值. 2.subprocess提供了2种方法调用子程序. 实例 # coding:utf-8 import os # popen返回文件对象,同open操作一样 f = os.popen(r"ls", "r") l = f.read() print(l) f.close() Python subprocess知识点扩充 使用subprocess模块的目的

  • Python中的tkinter库简单案例详解

    目录 案例一 Label & Button 标签和按钮 案例二 Entry & Text 输入和文本框 案例三 Listbox 部件 案例四 Radiobutton 选择按钮 案例五 Scale 尺度 案例六 Checkbutton 勾选项 案例七 Canvas 画布 案例八 Menubar 菜单 案例九 Frame 框架 案例十 messagebox 弹窗 案例十一 pack grid place 放置 登录窗口 TKinterPython 的 GUI 库非常多,之所以选择 Tkinte

随机推荐