Opengl ES之纹理贴图使用示例

目录
  • 正文
  • 纹理坐标
  • 纹理环绕
  • 纹理过滤
  • 纹理单元
    • Opengl中纹理的使用
    • 纹理坐标映射关系

正文

纹理可以理解为一个二维数组,它可以存储大量的数据,这些数据可以发送到着色器上。一般情况下我们所说的纹理是表示一副2D图,此时纹理存储的数据就是这个图的像素数据。

所谓的纹理贴图,就是使用Opengl将这个纹理数据渲染出来,这个过程有点像装修工人给墙体贴瓷砖,而瓷砖好比作纹理。

纹理坐标

如果为了将一副纹理图贴到Opengl绘制的一个矩形上,那么就需要解决一个问题,如何知道矩形的具体某个点对应纹理图的某个点呢?为了解决这个问题就引出了纹理坐标, 通过矩形的顶点坐标与纹理坐标关联,这样就明确了每个顶点应该显示纹理图的那部分像素数据。

纹理坐标在x和y轴上,范围为0到1之间。使用纹理坐标获取纹理颜色叫做采样(Sampling)。纹理坐标起始于(0, 0),也就是纹理图片的左下角,终始于(1, 1),即纹理图片的右上角,如下图所示:

纹理环绕

纹理坐标的值介于0到1之间,如果我们把纹理坐标设置成大于1那么会发生什么呢?OpenGL默认的行为是重复这个纹理图像,那么利用这个默认的特性我们能做些什么呢?那么比较火的抖音四分屏、九分屏滤镜不就是可以用这个特性巧妙地实现吗。

以下是通过改变纹理坐标实现四分屏和九分屏的一个小技巧:

// 4分屏
const static GLfloat TEXTURE_COORD[] = {
        2.0f,2.0f, // 右下
        2.0f,0.0f, // 右上
        0.0f,2.0f, // 左下
        0.0f,0.0f // 左上
};
// 九分屏
const static GLfloat TEXTURE_COORD[] = {
        3.0f,3.0f, // 右下
        3.0f,0.0f, // 右上
        0.0f,3.0f, // 左下
        0.0f,0.0f // 左上
};

当然,当纹理坐标超过1这个范围时,Opengl也提供了其他的选择,例如:

GL_REPEAT // 对纹理的默认行为。重复纹理图像。
GL_MIRRORED_REPEAT //和GL_REPEAT一样,但每次重复图片是镜像放置的。
GL_CLAMP_TO_EDGE //纹理坐标会被约束在0到1之间,超出的部分会重复纹理坐标的边缘,产生一种边缘被拉伸的效果。
GL_CLAMP_TO_BORDER //超出的坐标为用户指定的边缘颜色。

纹理环绕效果图

以上特性可以通过函数glTexParameteri设置:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);

纹理过滤

纹理过滤实际就是纹理在放大缩小的过程中像素的处理方式。其中在Opengl ES常用的两种纹理过滤方式是GL_NEAREST(邻近过滤)和GL_LINEAR(也叫线性过滤)。

  • GL_NEAREST是OpenGL默认的纹理过滤方式。当设置为GL_NEAREST的时候,OpenGL会选择中心点最接近纹理坐标的那个像素。
  • GL_LINEAR(也叫线性过滤,(Bi)linear Filtering)它会基于纹理坐标附近的纹理像素,计算出一个插值,近似出这些纹理像素之间的颜色。一个纹理像素的中心距离纹理坐标越近,那么这个纹理像素的颜色对最终的样本颜色的贡献越大。

GL_NEAREST产生了颗粒状的图案,我们能够清晰看到组成纹理的像素,而GL_LINEAR能够产生更平滑的图案,很难看出单个的纹理像素。

同理,纹理过滤特性也是通过函数glTexParameteri设置:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

纹理单元

纹理单元的主要目的是让我们在着色器中可以使用多于一个的纹理。通过把纹理单元赋值给采样器,我们可以一次绑定多个纹理,只要我们首先激活对应的纹理单元。 例如使用Opengl ES对视频解码后的YUV进行渲染就需要用到纹理单元的相关知识点。

Opengl中纹理的使用

在Opengl中使用纹理主要有以下几个步骤:

  • 创建纹理glGenTextures
  • 激活纹理glActiveTexture
  • 绑定纹理glBindTexture,传递特定的纹理id进行绑定
  • 上传纹理数据glTexImage2D
  • 解除纹理绑定,glBindTexture,传递0进行解除绑定

纹理坐标映射关系

在了解纹理贴图之前我们先回顾一下三个坐标系统,分别是纹理坐标系统、手机屏幕坐标系统、Opengl坐标系统。这三个坐标系统的的原点各不相同,纹理坐标系统我们上面已经介绍过了,这里不再重复。而手机屏幕坐标系统则是原点位于左上角,X轴向右为正,Y轴向下为正的坐标系统。 而Opengl坐标系统则是原点位于中心,X轴向右为正,Y轴向下为正,其值介于-1到1之间的一套坐标系统。

既然纹理贴图就像装修工人贴瓷砖一样,那么直接将纹理坐标和Opengl的顶点坐标一一对应起来即可,也就是如下图:

我们按照这个映射关系建立贴图:

// 顶点坐标,使用绘制两个三角形组成一个矩形的形式(三角形带)
// 第一第二第三个点组成一个三角形,第二第三第四个点组成一个三角形
const static GLfloat VERTICES[] = {
        0.5f,-0.5f, // 右下
        0.5f,0.5f, // 右上
        -0.5f,-0.5f, // 左下
        -0.5f,0.5f // 左上
};
// 纹理坐标(原点在左下角,这样贴图看到的会是倒置的
const static GLfloat TEXTURE_COORD[] = {
        1.0f,0.0f, // 右下
        1.0f,1.0f, // 右上
        0.0f,0.0f, // 左下
        0.0f,1.0f // 左上
};

运行发现图是贴上去了,但是看到的贴图却是倒置的,如下:

这是为什么呢?

因为纹理的生成是由图片像素来生成的,而图像的存储是从左上角开始的,但是纹理坐标原点却是在左下角的(笔者也不知道为什么要这么奇葩),所以就产生了倒置现象,因此正确的映射关系应该是以图片的左上角为原点做映射才对,而这也刚好与手机屏幕坐标系统匹配。

也就说正确的映射关系是需要先将以左下角为原点的纹理坐标进行倒置,然后再建立映射关系,这也是为什么有些博客说纹理坐标的原点是在左上角的原因(其实这是不对的,纹理坐标就是在图片的左下角,说在左上角的就是一个技巧),那么纹理坐标倒置后再映射如图: !

废话少说,放码过来...

#include "TextureMapOpengl.h"
#include "../utils/Log.h"
// 顶点着色器
static const char *ver = "#version 300 es\n"
                         "in vec4 aPosition;\n"
                         "in vec2 aTexCoord;\n"
                         "out vec2 TexCoord;\n"
                         "void main() {\n"
                         "  TexCoord = aTexCoord;\n"
                         "  gl_Position = aPosition;\n"
                         "}";
// 片元着色器
static const char *fragment = "#version 300 es\n"
                              "precision mediump float;\n"
                              "out vec4 FragColor;\n"
                              "in vec2 TexCoord;\n"
                              "uniform sampler2D ourTexture;\n"
                              "void main()\n"
                              "{\n"
                              "    FragColor = texture(ourTexture, TexCoord);\n"
                              "}";
// 使用绘制两个三角形组成一个矩形的形式(三角形带)
// 第一第二第三个点组成一个三角形,第二第三第四个点组成一个三角形
const static GLfloat VERTICES[] = {
        0.5f,-0.5f, // 右下
        0.5f,0.5f, // 右上
        -0.5f,-0.5f, // 左下
        -0.5f,0.5f // 左上
};
// 纹理坐标(原点在左下角,这样贴图看到的会是倒置的
//const static GLfloat TEXTURE_COORD[] = {
//        1.0f,0.0f, // 右下
//        1.0f,1.0f, // 右上
//        0.0f,0.0f, // 左下
//        0.0f,1.0f // 左上
//};
// 贴图纹理坐标(参考手机屏幕坐标系统,原点在左上角)
//由于对一个OpenGL纹理来说,它没有内在的方向性,因此我们可以使用不同的坐标把它定向到任何我们喜欢的方向上,然而大多数计算机图像都有一个默认的方向,它们通常被规定为y轴向下,X轴向右
const static GLfloat TEXTURE_COORD[] = {
        1.0f,1.0f, // 右下
        1.0f,0.0f, // 右上
        0.0f,1.0f, // 左下
        0.0f,0.0f // 左上
};
// 四分屏  GL_REPEAT环绕方式
//const static GLfloat TEXTURE_COORD[] = {
//        2.0f,2.0f, // 右下
//        2.0f,0.0f, // 右上
//        0.0f,2.0f, // 左下
//        0.0f,0.0f // 左上
//};
// 九分屏 GL_REPEAT环绕方式
//const static GLfloat TEXTURE_COORD[] = {
//        3.0f,3.0f, // 右下
//        3.0f,0.0f, // 右上
//        0.0f,3.0f, // 左下
//        0.0f,0.0f // 左上
//};
TextureMapOpengl::TextureMapOpengl():BaseOpengl() {
    initGlProgram(ver,fragment);
    positionHandle = glGetAttribLocation(program,"aPosition");
    textureHandle = glGetAttribLocation(program,"aTexCoord");
    textureSampler = glGetUniformLocation(program,"ourTexture");
    LOGD("program:%d",program);
    LOGD("positionHandle:%d",positionHandle);
    LOGD("textureHandle:%d",textureHandle);
    LOGD("textureSample:%d",textureSampler);
}
void TextureMapOpengl::setPixel(void *data, int width, int height, int length) {
    LOGD("texture setPixel");
    glGenTextures(1, &textureId);
    // 激活纹理,注意以下这个两句是搭配的,glActiveTexture激活的是那个纹理,就设置的sampler2D是那个
    // 默认是0,如果不是0的话,需要在onDraw的时候重新激活一下?
//    glActiveTexture(GL_TEXTURE0);
//    glUniform1i(textureSampler, 0);
// 例如,一样的
    glActiveTexture(GL_TEXTURE2);
    glUniform1i(textureSampler, 2);
    // 绑定纹理
    glBindTexture(GL_TEXTURE_2D, textureId);
    // 为当前绑定的纹理对象设置环绕、过滤方式
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
    // 生成mip贴图
    glGenerateMipmap(GL_TEXTURE_2D);
    glBindTexture(GL_TEXTURE_2D, textureId);
    // 解绑定
    glBindTexture(GL_TEXTURE_2D, 0);
}
void TextureMapOpengl::onDraw() {
    glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
    glClear(GL_COLOR_BUFFER_BIT);
    glUseProgram(program);
    // 激活纹理
    glActiveTexture(GL_TEXTURE2);
    glUniform1i(textureSampler, 2);
    // 绑定纹理
    glBindTexture(GL_TEXTURE_2D, textureId);
    /**
     * size 几个数字表示一个点,显示是两个数字表示一个点
     * normalized 是否需要归一化,不用,这里已经归一化了
     * stride 步长,连续顶点之间的间隔,如果顶点直接是连续的,也可填0
     */
    // 启用顶点数据
    glEnableVertexAttribArray(positionHandle);
    glVertexAttribPointer(positionHandle,2,GL_FLOAT,GL_FALSE,0,VERTICES);
    // 纹理坐标
    glEnableVertexAttribArray(textureHandle);
    glVertexAttribPointer(textureHandle,2,GL_FLOAT,GL_FALSE,0,TEXTURE_COORD);
    // 4个顶点绘制两个三角形组成矩形
     glDrawArrays(GL_TRIANGLE_STRIP,0,4);
    glUseProgram(0);
    // 禁用顶点
    glDisableVertexAttribArray(positionHandle);
    if(nullptr != eglHelper){
        eglHelper->swapBuffers();
    }
    glBindTexture(GL_TEXTURE_2D, 0);
}
TextureMapOpengl::~TextureMapOpengl() {
    LOGD("TextureMapOpengl析构函数");
}

仔细看注释多理解...

纹理贴图运行结果

以上就是Opengl ES之纹理贴图使用示例的详细内容,更多关于Opengl ES 纹理贴图的资料请关注我们其它相关文章!

(0)

相关推荐

  • OpenGL中点Bresenham绘制直线算法

    本文实例为大家分享了OpenGL中点Bresenham绘制直线算法,供大家参考,具体内容如下 环境 macos xcode编译器 代码 #include <GLUT/GLUT.h> #include <iostream> #include<iostream> #include<cstdlib> #include<ctime> using namespace std; float wid = 400; //设置窗口的大小,约定窗口必须为正方形 fl

  • 一文详解 OpenGL ES 纹理颜色混合的方法

    目录 一.混合API 二.参数含义 2.1 举个栗子 2.2 参数含义 三. 几种常用混合方式效果 3.1 混合(GL_ONE, GL_ZERO) 3.2 混合(GL_ONE, GL_ONE) 3.3 混合(GL_ONE, GL_ONE_MINUS_DST_ALPHA) 3.4 混合 (GL_SRC_ALPHA, GL_ONE) 3.5 混合 (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) 在OpenGL中绘制的时候,有时候想使新画的颜色和已经有的颜色按照一定的方式

  • 在iOS中使用OpenGL ES实现绘画板的方法

    今天我们使用 OpenGL ES 来实现一个绘画板,主要介绍在 OpenGL ES 中绘制平滑曲线的实现方案. 首先看一下最终效果: 在 iOS 中,有很多种方式可以实现一个绘画板,比如我的另外一个项目 MFPaintView 就是基于 CoreGraphics 实现的. 然而,使用 OpenGL ES 来实现可以获得更多的灵活性,比如我们可以自定义笔触的形状,这是其他实现方式做不到的. 我们知道,OpenGL ES 中只有 点.直线.三角形 这三种图元.因此, 怎么在 OpenGL ES 中绘

  • Android OpenGLES如何给相机添加滤镜详解

    滤镜介绍 目前市面上的滤镜有很多,但整体归类也就几样,都是在fragment shader中进行处理.目前滤镜最常用的就是 lut滤镜以及调整RGB曲线的滤镜了.其他的类型变更大同小异. 动态滤镜的构建 为了实现动态下载的滤镜,我们接下来实现一套滤镜的json参数,主要包括滤镜类型.滤镜名称.vertex shader.fragment shader 文件.统一变量列表.与统一变量绑定的纹理图片.默认滤镜强度.是否带纹理宽高偏移量.音乐路径.音乐是否循环播放等参数. json 以及各个字段的介绍

  • Android OpenGL ES实现简单绿幕抠图

    目录 正文 OES Filter BlendShader Filter 最后的效果 缺陷 正文 实现绿幕抠图,其实想法很简单. 这里简单粗暴的使用着色器替换. OES Filter 直接实现在相机预览上的Shader #extension GL_OES_EGL_image_external : require precision mediump float; varying vec2 vTextureCoordinate; uniform samplerExternalOES uTexture;

  • Android OpenGL ES 实现抖音传送带特效(原理解析)

    目录 抖音传送带特效原理 抖音传送带特效实现 抖音 APP 真是个好东西,不过也容易上瘾,老实说你的抖音是不是反复卸载又反复安装了,后来我也发现我的几个 leader 都不刷抖音,这令我挺吃惊的. 我刷抖音主要是为了看新闻,听一些大 V 讲历史,研究抖音的一些算法特效,最重要的是抖音提供了一个年轻人的视角去观察世界.另外,自己感兴趣的内容看多了,反而训练抖音推送更多类似的优质内容,大家可以反向利用抖音的这一特点. 至于我的 leader 老是强调刷抖音不好,对此我并不完全认同. 抖音传送带特效原

  • Opengl ES之纹理贴图使用示例

    目录 正文 纹理坐标 纹理环绕 纹理过滤 纹理单元 Opengl中纹理的使用 纹理坐标映射关系 正文 纹理可以理解为一个二维数组,它可以存储大量的数据,这些数据可以发送到着色器上.一般情况下我们所说的纹理是表示一副2D图,此时纹理存储的数据就是这个图的像素数据. 所谓的纹理贴图,就是使用Opengl将这个纹理数据渲染出来,这个过程有点像装修工人给墙体贴瓷砖,而瓷砖好比作纹理. 纹理坐标 如果为了将一副纹理图贴到Opengl绘制的一个矩形上,那么就需要解决一个问题,如何知道矩形的具体某个点对应纹理

  • Opengl ES之FBO帧缓冲对象使用详解

    目录 FBO介绍 如何使用FBO FBOOpengl.h FBOOpengl.cpp FBO介绍 FBO帧缓冲对象,它的主要作用一般就是用作离屏渲染,例如做Camera相机图像采集进行后期处理时就可能会用到FBO.假如相机出图的是OES纹理,为了方便后期处理,一般先将OES纹理通过FBO转换成普通的2D纹理,然后再通过FBO等增加美颜等其他各种特效滤镜,最后将FBO一路流送进编码器进行编码,另外一路渲染到屏幕上进行预览显示. FBO总结起来就是可以暂时将未处理完的帧不直接渲染到屏幕上,而是渲染到

  • OpenGL ES纹理详解

    使用前面学过的技术已经可以利用OpenGL ES构建立体图形,并通过顶点着色器和片元着色器对其进行各种变化呢和光照等效果使得三维效果更加真实,实际上我看看到很多的3D游戏漂亮多了,那是因为有各种各样的漂亮的图像带给人很多视觉盛宴,这篇文章在前面的基础上,增加物体的表面贴图,使得物体更加好看. 纹理概念 纹理用来表示图像照片或者说一系列的数据,使用纹理可以使物体用用更多的细节.OpenGL ES 2.0 中有两种贴图:二维纹理和立方体纹理. 每个二维纹理都由许多小的纹理元素组成,类似与片元和像素,

  • 通过OpenGL ES混合模式缩放视频缓冲区来适应显示尺寸

    当开发基于软件模式的游戏时,通过缩放视频缓冲区来适应显示尺寸是最棘手的问题之一.当面对众多不同的分辨率时(比如开放环境下的Android),该问题会变得更加麻烦,作为开发人员,我们必须尝试在性能与显示质量之间找到最佳平衡点.正如我们在第2章中看到的,缩放视频缓冲区从最慢到最快共有3种类型. 软件模拟:3中类型中最慢,但最容易实现,是没有GPU的老款设备上的最佳选择.但是现在大部分智能手机都支持硬件加速. 混合模式:这种方式混合使用软件模拟(创建图像缓冲区)和硬件渲染(向显示屏绘制)两种模式.这种

  • Android开发 OpenGL ES绘制3D 图形实例详解

    OpenGL ES是 OpenGL三维图形API 的子集,针对手机.PDA和游戏主机等嵌入式设备而设计. Ophone目前支持OpenGL ES 1.0 ,OpenGL ES 1.0 是以 OpenGL 1.3 规范为基础的,OpenGL ES 1.1 是以 OpenGL 1.5 规范为基础的.本文主要介绍利用OpenGL ES绘制图形方面的基本步骤. 本文内容由三部分构成.首先通过EGL获得OpenGL ES的编程接口;其次介绍构建3D程序的基本概念;最后是一个应用程序示例. OpenGL E

  • android使用OPENGL ES绘制圆柱体

    本文实例为大家分享了android使用OPENGL ES绘制圆柱体的具体代码,供大家参考,具体内容如下 效果图: 编写jiem.java *指定屏幕所要显示的假面,并对见.界面进行相关设置     *为Activity设置恢复处理,当Acitvity恢复设置时显示界面同样应该恢复     *当Activity暂停设置时,显示界面同样应该暂停 package com.scout.eeeeeee; import android.app.Activity; import android.os.Bund

  • OpenGL ES着色器使用详解(二)

    本文介绍了OpenGL ES着色器使用的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 1.着色器语言 着色器语言是一种高级图形编程语言,和C/C++语言很类似,但存在很大差别,比如,不支持double,byte ,short,不支持unin,enum,unsigned以及位运算等,但其加入了很多原生的数据类型,如向量,矩阵等. 数据类型可分为标量.向量.矩阵.采样器.结构体.数组等 向量 向量传递参数,如果只提供一个标量,这个值用于设置所有向量的值:如果输入是多个标量或者是矢量,从左到

  • OpenGL ES渲染管线概述(一)

    渲染管线一般是由显示芯片GPU内部处理图形信号的并行处理单元组成,这些并行处理单元之间是独立的,从另一个角度看,渲染管线实际上也是一系列绘制过程,这一系列过程的输入是待绘制物体的相关描述信息,输出的是要显示的图像帧数据. OpenGL ES管线主要包括: 读取顶点数据->顶点着色器->组装图元->光栅化图元->片元着色器->写入帧缓冲区->显示到屏幕上 读取顶点数据指的是将待绘制的图形的顶点数据传递给渲染管线中. 顶点着色器最终生成每个定点的最终位置,执行顶点的各种变换

随机推荐