Python使用plt.boxplot()函数绘制箱图、常用方法以及含义详解

目录
  • 1. 箱图含义
  • 2.计算方法
  • 3.绘图
    • 3.1 绘制单个箱图
    • 3.2 绘制多个箱图
    • 3.3实战
    • 3.3 参数详解
    • 3.4 常用方法
  • 总结

1. 箱图含义

箱图是一中用于统计数据分布的统计图,也可以粗略地看出数据是否具有对称性,分布的分散程度等信息。箱图中的信息含义如下:

最下方的横线表示最小值最上方的横线表示最大值黑色空心圆圈表示异常值黑色实心圆圈表示极端值箱子由下四分位数、中值以及上四分位数组成

异常值又称离群值,指大于1.5倍的四分位数间距的值。处于1.5倍~3倍四分位数间距的值用空心圆圈表示。极端值属于异常值中的一种。
极端值是指大于3倍的四分位数间距的值。

2.计算方法

首先找出一组数据的五个特征值,包括除异常值外的最小值(minimum)和最大值(maximum)、中位数(median)、两个四分位数(上四分位数Q1和下四分位Q3数);

中位数:将所有数值从小到大排列,如果是奇数个数值则取最中间一个值作为中位数,之后最中间的值在计算Q1和Q3时不再使用偶数个数值则取最中间两个数的平均数作为中位数,这两个数在计算Q1和Q3时继续使用

Q1:中位数将所有数据分成两部分,最小值到中位数的部分按取中位数的方法取中位数作为Q1。

Q3:同Q1取法,取中位数到最大值的中位数。

IQR(四分位数间距)=Q3-Q1

所有不在(Q1-1.5IQR,Q3+1.5IQR)的区间内的数为离群值,剩下的值最大的为最大值,最小的为最小值。

特征值(从下到上):最小值、Q1、中位数、Q3、最大值

将五个数值描绘在一个图上,五个特征值在一个直线上,最小值和Q1连接起来,Q1、中位数、Q3分别作平行等长线段
然后,连接两个四分位数构成箱子。

最后连接两个极值点与箱子,形成箱式图,然后点上离群值即可。

3.绘图

3.1 绘制单个箱图

import matplotlib.pyplot as plt
import numpy as np

#生成data数据
np.random.seed(100)
data = np.random.normal(size=(1000,),loc=0,scale=1)

# 绘图
plt.boxplot(data)
plt.show()

3.2 绘制多个箱图

import matplotlib.pyplot as plt
import numpy as np

np.random.seed(100)
data = np.random.normal(size=(1000,4),loc=0,scale=1)

plt.boxplot(data)

plt.show()

3.3实战

def plt_box_iamge(df):
    """
    snrr的五个范围为[5,10)、[10,15)、[15,20)、[20,30)、[30-),按照五个snrr范围计算对应redchi的箱图
    :param df:包含snrr以及redchi的csv数据(dataFrame)。
    :return:
    """
	# 根据snrr范围对redchi进行筛选。
    df1 = df.loc[df['lam_snrr'] >= 5]
    redchi_1 = df1.loc[df1['lam_snrr'] < 10].redchi

    df2 = df.loc[df['lam_snrr'] >= 10]
    redchi_2 = df2.loc[df2['lam_snrr'] < 15].redchi

    df3 = df.loc[df['lam_snrr'] >= 15]
    redchi_3 = df3.loc[df3['lam_snrr'] < 20].redchi

    df4 = df.loc[df['lam_snrr'] >= 20]
    redchi_4 = df4.loc[df4['lam_snrr'] < 30].redchi

    redchi_5 = df.loc[df['lam_snrr'] >= 30].redchi
    # 绘图
    ax = plt.subplot()
    ax.boxplot([redchi_1, redchi_2, redchi_3, redchi_4, redchi_5])
    # 设置轴坐标值刻度的标签
    ax.set_xticklabels(['5<=snrr<10', '10<=snrr<15', '15<=snrr<20', '20<=snrr<30', '30<=snrr'], fontsize=8)
	#	保存图片
    plt.savefig('./images/box.jpg')
    plt.show()

if __name__ == '__main__':
    df = pd.read_csv('./inputfile/lamost6w_new.csv')
    df_sc = screening(df)  # 筛选数据 (lamost数据应该在正常值范围内,不然因为数值差过大会导致绘制不出图像!)
    plt_box_iamge(df_sc)

3.3 参数详解

plt.boxplot(x,                      # x:指定要绘制箱图的数据
            notch=None,           # notch:是否是凹口的形式展现箱线图,默认非凹口
            sym=None,              # sym:指定异常点的形状,默认为+号显示
            vert=None,              # vert:是否需要将箱线图垂直摆放,默认垂直摆放
            whis=None,             # whis:指定上下须与上下四分位的距离,默认为1.5倍的四分位差
            positions=None,   # positions:指定箱线图的位置,默认为[0,1,2…]
            widths=None,         # widths:指定箱线图的宽度,默认为0.5
            patch_artist=None,        # patch_artist:是否填充箱体的颜色
            meanline=None,             # meanline:是否用线的形式表示均值,默认用点来表示
            showmeans=None,       # showmeans:是否显示均值,默认不显示
            showcaps=None,           # showcaps:是否显示箱线图顶端和末端的两条线,默认显示
            showbox=None,             # showbox:是否显示箱线图的箱体,默认显示
            showfliers=None,          # showfliers:是否显示异常值,默认显示
            boxprops=None,           # boxprops:设置箱体的属性,如边框色,填充色等
            labels=None,                  # labels:为箱线图添加标签,类似于图例的作用
            flierprops=None,          # filerprops:设置异常值的属性,如异常点的形状、大小、填充色等
            medianprops=None,   # medianprops:设置中位数的属性,如线的类型、粗细等
            meanprops=None,       # meanprops:设置均值的属性,如点的大小、颜色等
            capprops=None,           # capprops:设置箱线图顶端和末端线条的属性,如颜色、粗细等
            whiskerprops=None)   # whiskerprops:设置须的属性,如颜色、粗细、线的类型等

3.4 常用方法

import matplotlib.pyplot as plt
import numpy as np

np.random.seed(100)
data = np.random.normal(size=(1000,4),loc=0,scale=1)

ax = plt.subplot()
ax.boxplot(data)                                 # 绘图
ax.set_xlim([0,5])                               # 设置x轴值的范围  rotation=30
# ax.set_xticks()  							      # 自定义x轴的值
ax.set_xlabel("xlabel")                  # 设置x轴的标签
ax.set_xticklabels(['A','B','C','D'],  rotation=30,fontsize=10)   # 设置x轴坐标值的标签 旋转角度 字体大小
ax.set_title("xcy")       					  # 设置图像标题
ax.legend(labels= ['A','B','C','D'],loc='best',)  # 增加图例
ax.text(x=0.2 , y=3.5 , s="test" ,fontsize=12)   # 增加注

plt.show()

参考:
百度百科
matplotlib官方文档

总结

到此这篇关于Python使用plt.boxplot()函数绘制箱图、常用方法以及含义详解的文章就介绍到这了,更多相关plt.boxplot()函数绘制箱图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python数据可视化:箱线图多种库画法

    概念 箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分别为数据的第25%,50%和75%的数字. 四分位间距(Interquartilerange(IQR))=上分位数(upper quartile)-下分位数(lower quartile) 箱线图分为两部分,分别是箱(box)和须(whisker).箱(box)用来表示从第一分位到第三分位的数

  • Python使用plt.boxplot() 参数绘制箱线图

    Python 绘制箱线图主要用 matplotlib 库里 pyplot 模块里的 boxplot() 函数. plt.boxplot() 参数详解 plt.pie(x, # 指定要绘制箱线图的数据: notch=None, # 是否是凹口的形式展现箱线图,默认非凹口: sym=None, # 指定异常点的形状,默认为+号显示: vert=None, # 是否需要将箱线图垂直摆放,默认垂直摆放: whis=None, # 指定上下须与上下四分位的距离,默认为1.5倍的四分位差: position

  • python绘制箱型图

    本文实例为大家分享了python绘制箱型图的具体代码,供大家参考,具体内容如下 import numpy as np import pandas as pd import matplotlib.pyplot as plt # Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图. import seaborn as sns from scipy import stats import warni

  • Python使用plt.boxplot()函数绘制箱图、常用方法以及含义详解

    目录 1. 箱图含义 2.计算方法 3.绘图 3.1 绘制单个箱图 3.2 绘制多个箱图 3.3实战 3.3 参数详解 3.4 常用方法 总结 1. 箱图含义 箱图是一中用于统计数据分布的统计图,也可以粗略地看出数据是否具有对称性,分布的分散程度等信息.箱图中的信息含义如下: 最下方的横线表示最小值最上方的横线表示最大值黑色空心圆圈表示异常值黑色实心圆圈表示极端值箱子由下四分位数.中值以及上四分位数组成 异常值又称离群值,指大于1.5倍的四分位数间距的值.处于1.5倍~3倍四分位数间距的值用空心

  • 对python中不同模块(函数、类、变量)的调用详解

    首先,先介绍两种引入模块的方法. 法一:将整个文件引入 import 文件名 文件名.函数名( ) / 文件名.类名 通过这个方法可以运行另外一个文件里的函数 法二:只引入某个文件中一个类/函数/变量 需要从某个文件中引入多个函数或变量时,用逗号隔开即可 from 文件名 import 函数名,类名,变量名 接下来,通过一个具体的例子说明引入 模块的具体方法: 假设新建一个python包test2,里边有一个名为run.py的python文件,run.py文件里有一个名为running()的函数

  • python函数声明和调用定义及原理详解

    这篇文章主要介绍了python函数声明和调用定义及原理详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 函数是指代码片段,可以重复调用,比如我们前面文章接触到的type()/len()等等都是函数,这些函数是python的内置函数,python底层封装后用于实现某些功能. 一.函数的定义 在Python中,定义一个函数要使用def语句,依次写出函数名.括号.括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回:

  • Python数据结构之图的存储结构详解

    一.图的定义 图是一种比树更复杂的一种数据结构,在图结构中,结点之间的关系是任意的,任意两个元素之间都可能相关,因此,它的应用极广.图中的数据元素通常被称为顶点 ( V e r t e x ) (Vertex) (Vertex), V V V是顶点的有穷非空集合, V R VR VR是两个顶点之间的关系的集合(可以为空),可以表示为图 G = { V , { V R } } G=\{V,\{VR\}\} G={V,{VR}}. 二.相关术语 2.1 无向图 给定图 G = { V , { E }

  • Python实现GIF动图以及视频卡通化详解

    目录 前言 环境依赖 核心代码 gif动图卡通化 视频卡通化 总结 前言 参考文章:Python实现照片卡通化 我继续魔改一下,让该模型可以支持将gif动图或者视频,也做成卡通化效果.毕竟一张图可以那就带边视频也可以,没毛病.所以继给次元壁来了一拳,我在加两脚. 项目github地址:github地址 环境依赖 除了参考文章中的依赖,还需要加一些其他依赖,requirements.txt如下: 其他环境不太清楚的,可以看我前言链接地址的文章,有具体说明. 核心代码 不废话了,先上gif代码. g

  • Python绘图库之pyqtgraph的用法详解

    plot 设置plot的pen属性的几种方法,通过画笔可以设置绘制图像的颜色.线宽等参数: pen=(255,0,0) pen=pg.mkPen(color=‘b’, width=5) pen=pg.mkPen({‘color’:‘FF0’, ‘width’: 2}) import sys import os from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * import pyqt

  • Python实现双X轴双Y轴绘图的示例详解

    诈尸人口回归.这一年忙着灌水忙到头都掉了,最近在女朋友的提醒下终于想起来博客的账号密码,正好今天灌水的时候需要画一个双X轴双Y轴的图,研究了两小时终于用Py实现了.找资料的过程中没有发现有系统的文章,反正代码都整理出来了,我决定顺势水一篇. 目前找到的plt实现双X轴双Y轴绘图方式有两种: 使用fig.add_subplot方式将两对坐标系叠加在一个fig上实现双X轴双Y轴效果.所有调整均可完美实现,推荐该方式 通过axes.twinx().twiny()方式实现双X轴双Y轴图形绘制.问题在于对

  • Python实战实现爬取天气数据并完成可视化分析详解

    1.实现需求: 从网上(随便一个网址,我爬的网址会在评论区告诉大家,dddd)获取某一年的历史天气信息,包括每天最高气温.最低气温.天气状况.风向等,完成以下功能: (1)将获取的数据信息存储到csv格式的文件中,文件命名为”城市名称.csv”,其中每行数据格式为“日期,最高温,最低温,天气,风向”: (2)在数据中增加“平均温度”一列,其中:平均温度=(最高温+最低温)/2,在同一张图中绘制两个城市一年平均气温走势折线图: (3)统计两个城市各类天气的天数,并绘制条形图进行对比,假设适合旅游的

  • python爬虫系列Selenium定向爬取虎扑篮球图片详解

    前言: 作为一名从小就看篮球的球迷,会经常逛虎扑篮球及湿乎乎等论坛,在论坛里面会存在很多精美图片,包括NBA球队.CBA明星.花边新闻.球鞋美女等等,如果一张张右键另存为的话真是手都点疼了.作为程序员还是写个程序来进行吧! 所以我通过Python+Selenium+正则表达式+urllib2进行海量图片爬取. 运行效果: http://photo.hupu.com/nba/tag/马刺 http://photo.hupu.com/nba/tag/陈露 源代码: # -*- coding: utf

随机推荐