NoSQL开篇之为什么要使用NoSQL

NoSQL在2010年风生水起,大大小小的Web站点在追求高性能高可靠性方面,不由自主都选择了NoSQL技术作为优先考虑的方面。今年伊始,InfoQ中文站有幸邀请到凤凰网的孙立先生,为大家分享他之于NoSQL方面的经验和体会。

非常荣幸能受邀在InfoQ开辟这样一个关于NoSQL的专栏,InfoQ是我非常尊重的一家技术媒体,同时我也希望借助InfoQ,在国内推动NoSQL的发展,希望跟我一样有兴趣的朋友加入进来。这次的NoSQL专栏系列将先整体介绍NoSQL,然后介绍如何把NoSQL运用到自己的项目中合适的场景中,还会适当地分析一些成功案例,希望有成功使用NoSQL经验的朋友给我提供一些线索和信息。

NoSQL概念

随着web2.0的快速发展,非关系型、分布式数据存储得到了快速的发展,它们不保证关系数据的ACID特性。NoSQL概念在2009年被提了出来。NoSQL最常见的解释是“non-relational”,“Not Only SQL”也被很多人接受。(“NoSQL”一词最早于1998年被用于一个轻量级的关系数据库的名字。)
NoSQL被我们用得最多的当数key-value存储,当然还有其他的文档型的、列存储、图型数据库、xml数据库等。在NoSQL概念提出之前,这些数据库就被用于各种系统当中,但是却很少用于web互联网应用。比如cdb、qdbm、bdb数据库。

传统关系数据库的瓶颈

传统的关系数据库具有不错的性能,高稳定型,久经历史考验,而且使用简单,功能强大,同时也积累了大量的成功案例。在互联网领域,MySQL成为了绝对靠前的王者,毫不夸张的说,MySQL为互联网的发展做出了卓越的贡献。
在90年代,一个网站的访问量一般都不大,用单个数据库完全可以轻松应付。在那个时候,更多的都是静态网页,动态交互类型的网站不多。
到了最近10年,网站开始快速发展。火爆的论坛、博客、sns、微博逐渐引领web领域的潮流。在初期,论坛的流量其实也不大,如果你接触网络比较早,你可能还记得那个时候还有文本型存储的论坛程序,可以想象一般的论坛的流量有多大。

Memcached+MySQL

后来,随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库上都开始出现了性能问题,web程序不再仅仅专注在功能上,同时也在追求性能。程序员们开始大量的使用缓存技术来缓解数据库的压力,优化数据库的结构和索引。开始比较流行的是通过文件缓存来缓解数据库压力,但是当访问量继续增大的时候,多台web机器通过文件缓存不能共享,大量的小文件缓存也带了了比较高的IO压力。在这个时候,Memcached就自然的成为一个非常时尚的技术产品。
Memcached作为一个独立的分布式的缓存服务器,为多个web服务器提供了一个共享的高性能缓存服务,在Memcached服务器上,又发展了根据hash算法来进行多台Memcached缓存服务的扩展,然后又出现了一致性hash来解决增加或减少缓存服务器导致重新hash带来的大量缓存失效的弊端。当时,如果你去面试,你说你有Memcached经验,肯定会加分的。

Mysql主从读写分离

由于数据库的写入压力增加,Memcached只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。Mysql的master-slave模式成为这个时候的网站标配了。

分表分库

随着web2.0的继续高速发展,在Memcached的高速缓存,MySQL的主从复制,读写分离的基础之上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。同时,开始流行使用分表分库来缓解写压力和数据增长的扩展问题。这个时候,分表分库成了一个热门技术,是面试的热门问题也是业界讨论的热门技术问题。也就在这个时候,MySQL推出了还不太稳定的表分区,这也给技术实力一般的公司带来了希望。虽然MySQL推出了MySQL Cluster集群,但是由于在互联网几乎没有成功案例,性能也不能满足互联网的要求,只是在高可靠性上提供了非常大的保证。

MySQL的扩展性瓶颈

在互联网,大部分的MySQL都应该是IO密集型的,事实上,如果你的MySQL是个CPU密集型的话,那么很可能你的MySQL设计得有性能问题,需要优化了。大数据量高并发环境下的MySQL应用开发越来越复杂,也越来越具有技术挑战性。分表分库的规则把握都是需要经验的。虽然有像淘宝这样技术实力强大的公司开发了透明的中间件层来屏蔽开发者的复杂性,但是避免不了整个架构的复杂性。分库分表的子库到一定阶段又面临扩展问题。还有就是需求的变更,可能又需要一种新的分库方式。
MySQL数据库也经常存储一些大文本字段,导致数据库表非常的大,在做数据库恢复的时候就导致非常的慢,不容易快速恢复数据库。比如1000万4KB大小的文本就接近40GB的大小,如果能把这些数据从MySQL省去,MySQL将变得非常的小。
关系数据库很强大,但是它并不能很好的应付所有的应用场景。MySQL的扩展性差(需要复杂的技术来实现),大数据下IO压力大,表结构更改困难,正是当前使用MySQL的开发人员面临的问题。

NOSQL的优势

易扩展

NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

大数据量,高性能

NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

灵活的数据模型

NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。

高可用

NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。

总结

NoSQL数据库的出现,弥补了关系数据(比如MySQL)在某些方面的不足,在某些方面能极大的节省开发成本和维护成本。
MySQL和NoSQL都有各自的特点和使用的应用场景,两者的紧密结合将会给web2.0的数据库发展带来新的思路。让关系数据库关注在关系上,NoSQL关注在存储上。

参考阅读

NoSQL:http://nosql-database.org/
NoSQL在wiki上的介绍:http://en.wikipedia.org/wiki/NoSQL
NoSQL相关博客:http://nosql.mypopescu.com/
NoSQL相关博客:http://blog.nosqlfan.com/
新浪微博NoSQL微群:http://q.t.sina.com.cn/127870

关于作者

孙立,目前在凤凰网负责底层组的研发工作。曾就职于搜狐和ku6。多年互联网从业经验和程序开发,对分布式搜索引擎的开发,高并发,大数据量网站系统架构优化,高可用性,可伸缩性,分布式系统缓存,数据库分表分库(sharding)等有丰富的经验,并且对运维监控和自动化运维控制有经验。开源项目phplock,phpbuffer的作者。近期开发了一个NOSQL数据库存储INetDB,是NoSQL数据库爱好者。他的新浪微博是:http://t.sina.com.cn/sunli1223
感谢张凯峰对本文的策划及审校。

(0)

相关推荐

  • NoSQL数据库的分布式算法详解

    今天,我们将研究一些分布式策略,比如故障检测中的复制,这些策略用黑体字标出,被分为三段: 数据一致性.NoSQL需要在分布式系统的一致性,容错性和性能,低延迟及高可用之间作出权衡,一般来说,数据一致性是一个必选项,所以这一节主要是关于 数据复制 和 数据恢复 . 数据放置.一个数据库产品应该能够应对不同的数据分布,集群拓扑和硬件配置.在这一节我们将讨论如何 分布 以及 调整数据分布 才能够能够及时解决故障,提供持久化保证,高效查询和保证集训中的资源(如内存和硬盘空间)得到均衡使用. 对等系统.像

  • 大数据时代的数据库选择:SQL还是NoSQL?

    一.专家简介VoltDB公司首席技术官Ryan Betts表示,SQL已经赢得了大型企业的广泛部署,大数据是它可以支持的另一个领域.Couchbase公司首席执行官Bob Wiederhold表示,NoSQL是可行的选择,并且从很多方面来看,它是大数据的最佳选择,特别是涉及到可扩展性时.二.SQL经历时间的考验,并仍然在蓬勃发展结构化查询语言(SQL)是经过时间考验的胜利者,它已经主宰了几十年,目前大数据公司和组织(例如谷歌.Facebook.Cloudera和Apache)正在积极投资于SQL

  • 初识NoSQL NoSql数据库入门 NoSql数据库基础知识

    做了一年的大一年度项目了,对于关系型数据库结构还是有些了解了,有的时候还是觉得这种二维表不是很顺手.在看过一篇文章之后,对NoSQL有了初步的了解,(https://keen.io/blog/53958349217/analytics-for-hackers-how-to-think-about-event-data).这篇文章写的很好,确实写出来了在实际情况下NoSQL的"用武之地",而且用了MineCraft作分析,但是也许不够全面.比如文章中只是提到了,entity数据用关系型怎

  • PHP对MongoDB[NoSQL]数据库的操作

    一.MongoDB简介 MongoDB (名称来自"humongous") 是一个可扩展的.高性能.开源.模式自由.面向文档的数据库,集文档数据库.键值对存储和关系型数据库的优点于一身.官方站点:http://www.mongodb.org/,MongoDB特点: •面向文档存储(类JSON数据模式简单而强大)•动态查询•全索引支持,扩展到内部对象和内嵌数组•查询记录分析•快速,就地更新•高效存储二进制大对象 (比如照片和视频)•复制和故障切换支持•Auto-Sharding自动分片支

  • 8种主流NoSQL数据库系统特性对比和最佳应用场景

    曾在多家大公司任职的软件架构师兼顾问Kristóf Kovács在博客中对主流的NoSQL数据库(Cassandra.Mongodb.CouchDB.Redis.Riak.Membase.Neo4j以及HBase)进行了全方位的对比. 虽然SQL数据库是非常有用的工具,但经历了15年的一支独秀之后垄断即将被打破.这只是时间问题:被迫使用关系数据库,但最终发现不能适应需求的情况不胜枚举. 但是NoSQL数据库之间的不同,远超过两SQL数据库之间的差别.这意味着软件架构师更应该在项目开始时就选择好一

  • 深入解析NoSQL数据库的分布式算法(图文详解)

    尽管NoSQL运动并没有给分布式数据处理带来根本性的技术变革,但是依然引发了铺天盖地的关于各种协议和算法的研究以及实践.在这篇文章里,我将针对NoSQL数据库的分布式特点进行一些系统化的描述. 系统的可扩展性是推动NoSQL运动发展的的主要理由,包含了分布式系统协调,故障转移,资源管理和许多其他特性.这么讲使得NoSQL听起来像是一个大筐,什么都能塞进去.尽管NoSQL运动并没有给分布式数据处理带来根本性的技术变革,但是依然引发了铺天盖地的关于各种协议和算法的研究以及实践.正是通过这些尝试逐渐总

  • NoSQL和Redis简介及Redis在Windows下的安装和使用教程

    NoSQL简介 介绍redis前,我想还是先认识下NoSQL,即not only sql, 是一种非关系型的数据存储,key/value键值对存储.现有Nosql DB 产品: Redis/MongoDB/Memcached/Hbase/Cassandra/ Tokyo Cabinet/Voldemort/Dynomite/Riak/ CouchDB/Hypertable/Flare/Tin/Lightcloud/ KiokuDB/Scalaris/Kai/ThruDB, 等等~~~ 为什么需要

  • 纯Python开发的nosql数据库CodernityDB介绍和使用实例

    看看这个logo,有些像python的小蛇吧 .这次介绍的数据库codernityDB是纯python开发的. 先前用了下tinyDB这个本地数据库,也在一个api服务中用了下,一开始觉得速度有些不给力,结果一看实现的方式,真是太鸟了,居然就是json的存储,连个二进制压缩都没有.  这里介绍的CodernityDB 也是纯开发的一个小数据库. CodernityDB是开源的,纯Python语言(没有第三方依赖),快速,多平台的NoSQL型数据库.它有可选项支持HTTP服务版本(Codernit

  • 最新统计排名前十的SQL和NoSQL数据库排行榜

    本排名根据DB Engines的排行榜得来,该排行榜从人气上分析了市场上200个不同的数据库,这里一览Top 10. 无可争议的Top 3 Oracle.MySQL及Microsoft SQL Server一直以绝对的优势霸占着排行榜的前三名,以独特的优势瓜分了市场上最多的用户. 1.  Oracle 11g 首次发行:1980年 许可机制:Proprietary 是否SQL:是 Oracle是重要商业项目的首选,同时也是市场上最古老的主流数据库产品,Oracle有4个不同的版本可用:Enter

  • 关于NoSQL之MongoDB的一些总结

    NoSQL已经流行了很长一段时间,那么究竟是什么场景下你才更需要用到这些"新兴事物",就比如MongoDB?下面是一些总结: 你期望一个更高的写负载 默认情况下,对比事务安全,MongoDB更关注高的插入速度.如果你需要加载大量低价值的业务数据,那么MongoDB将很适合你的用例.但是必须避免在要求高事务安全的情景下使用MongoDB,比如一个1000万美元的交易. 不可靠环境保证高可用性 设置副本集(主-从服务器设置)不仅方便而且很快,此外,使用MongoDB还可以快速.安全及自动化

  • NoSQL 数据库你应该了解的 10 件事

    四分之一个世纪以来,关系型数据库(RDBMS)一直是主流数据库模型.但是现在非关系型数据库,"云"或者"NoSQL"数据库,正在作为一种替代数据库模型获得越来越多的占有率.本文中我们将关注非关系型 NoSQL 数据库的 10 个关键特征:排在前 5 位的优点和前 5 位的挑战.提示:点击链接可以下载本文 英文版PDF NoSQL 的五大有点 1:弹性扩展 多年来,数据库负载需要增加时,数据管理员只能依赖于纵向扩展(scale-up)--买更多更强的服务器,而不是依赖

  • 8 种常用的 NoSQL 数据库系统对比分析

    Kristóf Kovács 是一位软件架构师和咨询顾问,他最近发布了一片对比各种类型NoSQL数据库的文章. 虽然SQL数据库是非常有用的工具,但经历了15年的一支独秀之后垄断即将被打破.这只是时间问题:被迫使用关系数据库,但最终发现不能适应需求的情况不胜枚举. 但是NoSQL数据库之间的不同,远超过两 SQL数据库之间的差别.这意味着软件架构师更应该在项目开始时就选择好一个适合的 NoSQL数据库.针对这种情况,这里对 Cassandra.Mongodb.CouchDB.Redis. Ria

  • NoSQL反模式 - 文档数据库篇

    我们设计关系数据库Schema的都有一套完整的方案,而NoSQL却没有这些.半年前笔者读了本<SQL反模式>的书,觉得非常好.就开始留意,对于NoSQL是否也有反模式?好的反模式可以在我们设计Schema告诉哪里是陷阱和悬崖.NoSQL宣传的时候往往宣称是SchemaLess的,这会让人误解其不需要设计Schema.但如果不意识到设计Schema的必要,陷阱就在一直在黑暗中等着我们.这篇文章就总结一些别人的,也有自己犯过的深痛的设计Schema错误. NoSQL数据库最主流的有文档数据库,列存

  • MongoDB系列教程(一):NoSQL起源

    为什么出现NoSQL? 随着互联网的发展,当我们把一台服务器一台服务器变成两台服务器,当我们开始建立数据备份,当我们需要加一个缓冲层,来调整所有的查询,投入更多的硬件. 最后,需要将数据切分多个集群上,并重构大量的应用逻辑以适应这种切分.不久之后,你就会发现被自己数月前的设计数据结构限制住了. 随着web2.0的兴起,关系型数据库本身无法克服的缺陷越来越明显,主要表现为如下几点. 1.对数据高并发读写的需求 2.对海量数据的高效率存储和访问的需求. 3.对数据库的高可扩展性和高可用性的需求. 4

随机推荐