Python 作图实现坐标轴截断(打断)的效果

主题:利用python画图实现坐标轴截断或打断

关键词:python, plot, matplotlib, break axes

方法一:

首先介绍一种简单快速的方法——调用包 brokenaxes。

详细请点击参考

import matplotlib.pyplot as plt
from brokenaxes import brokenaxes
import numpy as np
fig = plt.figure(figsize=(5,2))
bax = brokenaxes(xlims=((0, .1), (.4, .7)), ylims=((-1, .7), (.79, 1)), hspace=.05, despine=False)
x = np.linspace(0, 1, 100)
bax.plot(x, np.sin(10 * x), label='sin')
bax.plot(x, np.cos(10 * x), label='cos')
bax.legend(loc=3)
bax.set_xlabel('time')
bax.set_ylabel('value')

效果如下:

方法二:

拼接法,该种方法代码更繁琐,但更有可能满足个性化的需求。

请点击参考链接

"""
Broken axis example, where the y-axis will have a portion cut out.
"""
import matplotlib.pyplot as plt
import numpy as np
# 30 points between [0, 0.2) originally made using np.random.rand(30)*.2
pts = np.array([
    0.015, 0.166, 0.133, 0.159, 0.041, 0.024, 0.195, 0.039, 0.161, 0.018,
    0.143, 0.056, 0.125, 0.096, 0.094, 0.051, 0.043, 0.021, 0.138, 0.075,
    0.109, 0.195, 0.050, 0.074, 0.079, 0.155, 0.020, 0.010, 0.061, 0.008])
# Now let's make two outlier points which are far away from everything.
pts[[3, 14]] += .8
# If we were to simply plot pts, we'd lose most of the interesting
# details due to the outliers. So let's 'break' or 'cut-out' the y-axis
# into two portions - use the top (ax) for the outliers, and the bottom
# (ax2) for the details of the majority of our data
f, (ax, ax2) = plt.subplots(2, 1, sharex=True)
# plot the same data on both axes
ax.plot(pts)
ax2.plot(pts)
# zoom-in / limit the view to different portions of the data
ax.set_ylim(.78, 1.)  # outliers only
ax2.set_ylim(0, .22)  # most of the data
# hide the spines between ax and ax2
ax.spines['bottom'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax.xaxis.tick_top()
ax.tick_params(labeltop='off')  # don't put tick labels at the top
ax2.xaxis.tick_bottom()
# This looks pretty good, and was fairly painless, but you can get that
# cut-out diagonal lines look with just a bit more work. The important
# thing to know here is that in axes coordinates, which are always
# between 0-1, spine endpoints are at these locations (0,0), (0,1),
# (1,0), and (1,1).  Thus, we just need to put the diagonals in the
# appropriate corners of each of our axes, and so long as we use the
# right transform and disable clipping.
d = .015  # how big to make the diagonal lines in axes coordinates
# arguments to pass to plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((-d, +d), (-d, +d), **kwargs)        # top-left diagonal
ax.plot((1 - d, 1 + d), (-d, +d), **kwargs)  # top-right diagonal
kwargs.update(transform=ax2.transAxes)  # switch to the bottom axes
ax2.plot((-d, +d), (1 - d, 1 + d), **kwargs)  # bottom-left diagonal
ax2.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs)  # bottom-right diagonal
# What's cool about this is that now if we vary the distance between
# ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(),
# the diagonal lines will move accordingly, and stay right at the tips
# of the spines they are 'breaking'
plt.show()

效果如下:

补充:python绘制折线图--纵坐标y轴截断

看代码吧~

# -*- coding: utf-8 -*-
"""
Created on Wed Dec  4 21:50:38 2019
@author: muli
"""
import matplotlib.pyplot as plt
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei'] #支持中文

names = ["1","2","3","4","5"]  # 刻度值命名
x = [1,2,3,4,5]    # 横坐标
y3= [2,3,1,4,5]    # 纵坐标
y4= [4,6,8,5,9]    # 纵坐标
y5=[24,27,22,26,28]     # 纵坐标
f, (ax3, ax) = plt.subplots(2, 1, sharex=False)  # 绘制两个子图
plt.subplots_adjust(wspace=0,hspace=0.08) # 设置 子图间距
ax.plot(x, y3, color='red', marker='o', linestyle='solid',label=u'1')   # 绘制折线
ax.plot(x, y4, color='g', marker='o', linestyle='solid',label=u'2')  # 绘制折线
plt.xticks(x, names, rotation=45) # 刻度值
ax3.xaxis.set_major_locator(plt.NullLocator()) # 删除坐标轴的刻度显示
ax3.plot(x, y5, color='blue', marker='o', linestyle='solid',label=u'3')  # 绘制折线
ax3.plot(x, y3, color='red', marker='o', linestyle='solid',label=u'1') # 起图例作用
ax3.plot(x, y4, color='g', marker='o', linestyle='solid',label=u'2') # 起图例作用
ax3.set_ylim(21, 30) # 设置纵坐标范围
ax.set_ylim(0, 10)  # 设置纵坐标范围
ax3.grid(axis='both',linestyle='-.') # 打开网格线
ax.grid(axis='y',linestyle='-.')   # 打开网格线
ax3.legend() # 让图例生效
plt.xlabel(u"λ") #X轴标签
plt.ylabel("mAP") #Y轴标签
ax.spines['top'].set_visible(False)    # 边框控制
ax.spines['bottom'].set_visible(True) # 边框控制
ax.spines['right'].set_visible(False)  # 边框控制
ax3.spines['top'].set_visible(False)   # 边框控制
ax3.spines['bottom'].set_visible(False) # 边框控制
ax3.spines['right'].set_visible(False)  # 边框控制
ax.tick_params(labeltop='off')
# 绘制断层线
d = 0.01  # 断层线的大小
kwargs = dict(transform=ax3.transAxes, color='k', clip_on=False)
ax3.plot((-d, +d), (-d, +d), **kwargs)        # top-left diagonal
kwargs.update(transform=ax.transAxes, color='k')  # switch to the bottom axes
ax.plot((-d, +d), (1 - d, 1 + d), **kwargs)  # bottom-left diagonal
plt.show()

结果如图所示:

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • 使用Python matplotlib作图时,设置横纵坐标轴数值以百分比(%)显示

    一.当我们用Python matplot时作图时,一些数据需要以百分比显示,以更方便地对比模型的性能提升百分比. 二.借助matplotlib.ticker.FuncFormatter(),将坐标轴格式化. 例子: # encoding=utf-8 import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter plt.rcParams['font.family'] = ['Times New Roman']

  • python使用Matplotlib改变坐标轴的默认位置

    使用Matplotlib绘制的图表的默认坐标轴是在左下角的,这样对于一些函数的显示不是非常方便,要改变坐标轴的默认显示方式主要要使用gca()方法 plt.gca()表示 Get current axis,使用这个方法我们可以获得整张图表的坐标对象,这样我们就可以对坐标进行处理了,像移动位置,设置颜色之类的,类似plt.gcf()这个是 Get current figure 即获得当前图表的图像,对图像进行处理. 我们可以定义一个变量接收这个值: ax = plt.gca() 接下来还要了解一个

  • Python利用matplotlib做图中图及次坐标轴的实例

    图中图 准备数据 import matplotlib.pyplot as plt fig = plt.figure() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 3, 4, 2, 5, 8, 6] - 大图 首先确定大图左下角的位置以及宽高: 注意,4个值都是占整个figure坐标系的百分比.在这里,假设figure的大小是10x10,那么大图就被包含在由(1, 1)开始,宽8,高8的坐标系内. # below are all percentage left, bott

  • python 设置xlabel,ylabel 坐标轴字体大小,字体类型

    本文介绍了python 设置xlabel,ylabel 坐标轴字体大小,字体类型,分享给大家,具体如下: #--coding:utf-8-- import matplotlib.pyplot as plt #数据设置 x1 =[0,5000,10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 55000]; y1=[0, 223, 488, 673, 870, 1027, 1193, 1407, 1609, 1791, 2

  • python matplotlib画盒图、子图解决坐标轴标签重叠的问题

    在使用matplotlib画图的时候将常会出现坐标轴的标签太长而出现重叠的现象,本文主要通过自身测过好用的解决办法进行展示,希望也能帮到大家,原图出现重叠现象例如图1: 代码为: data1=[[0.3765,0.3765,0.3765,0.3765,0.3765],[0.3765,0.3765,0.3765,0.3765,0.3765],[0.3765,0.3765,0.3765,0.3765,0.3765],[0.3765,0.3765,0.3765,0.3765,0.3765]] data

  • Python坐标轴操作及设置代码实例

    01.加载库 import numpy as np import pandas as pd import matplotlib.pyplot as plt 02.示例数据 x = np.linspace(-np.pi*2, np.pi*2) y1 = np.sin(x) y2 = np.power(x, 2) * 0.05 # 指数运算 df = pd.DataFrame({'a': y1, 'b': y2}, index=x) 1.默认设置下的图形 fig = plt.figure() df.

  • Python 作图实现坐标轴截断(打断)的效果

    主题:利用python画图实现坐标轴截断或打断 关键词:python, plot, matplotlib, break axes 方法一: 首先介绍一种简单快速的方法--调用包 brokenaxes. 详细请点击参考 import matplotlib.pyplot as plt from brokenaxes import brokenaxes import numpy as np fig = plt.figure(figsize=(5,2)) bax = brokenaxes(xlims=(

  • matplotlib教程——强大的python作图工具库

    matplotlib简介 如果你在大学里参加过数学建模竞赛或者是用过MATLAB的话,相比会对这一款软件中的画图功能印象深刻.MATLAB可以做出各种函数以及数值分布图像非常的好用和方便.如果你没用过呢也没关系,知道这么回事就好了.MATLAB虽然好用,但毕竟是收费软件,而且相比于MATLAB,很多人更喜欢Python的语法. 所以呢MATLAB就被惦记上了,后来有大神仿照MATLAB当中的画图工具,也在Python当中开发了一个类似的作图工具.这也就是我们今天这篇文章要讲的matplotlib

  • python作图基础之plt.contour实例详解

    目录 前言 使用示例 plt.contour()函数本身 plt.contour()图中的坐标 补充:plt.contour等高线绘制 总结 前言 plt.contour是python中用于画等高线的函数,这里介绍一下plt.contour的使用. 使用示例 import numpy as np import matplotlib.pyplot as plt x = np.linspace(-3, 3, 50) # 生成连续数据 y = np.linspace(-3, 3, 50) # 生成连续

  • python绘图之坐标轴的超详细讲解

    目录 1. 2D坐标轴 1.1 绘制简单的曲线 1.2 坐标轴的刻度线向内 1.3 将坐标刻度从整0开始 1.4 设置刻度栅格 1.5 不显示坐标 1.6 坐标值 1.7 绘制横线和竖线 1.8 设置坐标点的颜色 1.9 双坐标 2. 3D坐标轴 2.1 绘制3D散点图 2.2 绘制3D曲面图 2.3 绘制3D柱形图 引用 总结 1. 2D坐标轴 1.1 绘制简单的曲线 import matplotlib.pyplot as plt import numpy as np x=np.linspac

  • Python使用Matplotlib实现雨点图动画效果的方法

    本文实例讲述了Python使用Matplotlib实现雨点图动画效果的方法.分享给大家供大家参考,具体如下: 关键点 win10安装ffmpeg animation函数使用 update函数 win10安装ffmpeg 因为最后要将动画图保存为.mp4格式,要用到ffmpeg,去官网下载,我az下载的是windows64bit static版本的,下载后解压到软件安装常用路径,并将ffmpeg路径添加到环境变量(这个方法在最后没用,但还是添加一下) animationa函数 准确来说是anima

  • Python基于pygame实现的弹力球效果(附源码)

    本文实例讲述了Python基于pygame实现的弹力球效果.分享给大家供大家参考,具体如下: 运行效果: 代码部分如下: #A bouncing ball import sys, pygame __author__ = {'name' : 'Hongten', 'mail' : 'hongtenzone@foxmail.com', 'QQ' : '648719819', 'Version' : '1.0'} pygame.init() size = width, height = 600, 50

  • Python实现PS图像调整颜色梯度效果示例

    本文实例讲述了Python实现PS图像调整颜色梯度效果.分享给大家供大家参考,具体如下: 这里用 Python 实现 PS 中的色彩图,可以看到颜色的各种渐变,具体的效果可以参考附录说明 和之前的程序相比,这里利用矩阵的运算替代了 for 循环,提升了运行的效率. import numpy as np import matplotlib.pyplot as plt from skimage import io import numpy.matlib from skimage import img

  • python GUI实现小球满屏乱跑效果

    本文实例为大家分享了python GUI实现小球满屏乱跑效果的具体代码,供大家参考,具体内容如下 学习tkinter有一段时间了,综合运用一下,做一个类似屏保类的东西,碰到屏幕边缘就反弹回来的那种. 初级篇:上下单向移动 from tkinter import * import random import time # #创建一个类,这个类含有两个参数,一个是画布,一个是球的颜色 # class Ball: def __init__(self,canvas,color): self.canvas

  • Python 在OpenCV里实现仿射变换—坐标变换效果

    在现实的图像操作软件中,经常碰到的不是给出放大多少倍,而是由用户在软件的界面上选择多大的区域,或者选择几个点,那么这样情况下,怎么样来计算出变换矩阵呢?从前面知道变换矩阵是2X3的矩阵,说明有六个未知数,又有中学的代数知识知道要解决六个未知数,那么方程组至少要联立三条方程,要准备三条方程的先决条件,就是要有三组坐标.因此,只要在用户选择的区域里找到三个不同点的坐标,就可以计算出变换矩阵.如果给出三组坐标[0, 0], [200, 0], [0, 200],通过变换之后新坐标是[0, 0], [1

  • python实现七段数码管和倒计时效果

    8是典型的七段数码管的例子,因为刚好七段都有经过,这里我写的代码是从1开始右转. 这是看Mooc视频写的一个关于用七段数码管显示当前时间 # -*-coding:utf-8 -*- import turtle as t import time def drawGap(): t.penup() t.fd(5) def drawLine(draw): drawGap() t.pendown() if draw else t.penup() t.fd(40) t.right(90) def drawD

随机推荐