C++序列操作函数学习最全指南

目录
  • 前言
  • A.查找算法
    • 简单查找
    • 查找重复值
    • 查找子序列
  • B.其他只读算法
  • C.二分查找算法
  • D.只写算法
  • E.划分和排序
    • 划分
    • 排序
  • F.重排算法
  • G.排列
  • H.集合算法
  • I.杂项
  • 总结

前言

标准库定义了许多用于操作序列的算法,大多在algorithm和numeric文件中,大多数函数的原理并不复杂,但是在很多情况下可以替代手写的情况,甚至更加优秀。

这类算法函数非常多,但是他们都有共同的结构,类似的参数特性,所以非常好记忆。比如我们最经典的std::sort(beg, end, cmp),其中beg和end为首尾地址,左闭右开,既可以是C指针,也可以是STL线性容器的迭代器。cmp是可选的函数,用于替代默认的<比较规则。实际上大多数函数基本都是这种形式,记住一个就是记住一百个。

摘自C++ Primer附录

A. 查找算法

简单查找

find(beg, end, val)
find_if(beg, end, func1)
find_if_not(beg, end, func1)

find查找序列中第一个等于val的值,返回其指针或迭代器,在没有找到时返回end。

find_if和find相同,不过查找标准变成使谓词(布尔函数)返回true的第一个值。如查找序列中第一个奇数:

int a = *std::find(array, array+6, [](int x){
	return x & 1;
});

find_if_not和find_if相反,不过返回的是第一个使值为假的函数。

count(beg, end, val)
count_if(beg, end, func1)

count和count_if返回一个值,表示序列中多少值等于val或满足func1。

all_of(beg, end, func1)
any_of(beg, end, func1)
none_of(beg, end, func1)

返回布尔值,all_of当序列全部满足时返回真,any_of在有一个满足时返回真,none_of在全部不满足时返回真。序列为空时,any_of返回假,另外两个返回真。

查找重复值

adjacent_find(beg, end)
adjacent_find(beg, end, func2)
search_n(beg, end, count, val)

adjacent_find返回第一对相邻的重复元素(使用==比较或满足func为真的元素)的前面那个,若没有返回end
search_n返回一个指针或迭代器,从此位置有count个相等元素(使用==比较),若没有返回end

查找子序列

search(beg1, end1, beg2, end2)
find_end(beg1, end1, beg2, end2)
find_first_of(beg1, end1, beg2, end2)

search返回第二个序列在第一个序列中出现的位置,find_end相反,返回最后出现的位置,没有时返回end1。find_first_of返回的是第二个序列中任一元素第一次出现在序列一的位置,此时序列二不是序列,而是充当集合。

B. 其他只读算法

for_each(beg, end, func1)
mismatch(beg1, end1, beg2)
mismatch(beg1, end1, beg2, func2)
equal(beg1, end1, beg2)
equal(beg1, end1, beg2, func2)

对序列中每个数执行func1,很好用,很多时候可以减少代码量替代for。
mismatch比较两个序列中每一个元素,返回第一组不相等(使用==运算符)或使func2为假的位置(是一个pair),没有则返回俩end。
equal与mismatch类似,若所有元素相等(满足mismatch返回end),结果为true,否则false。

C. 二分查找算法

lower_bound(beg, end, val)
lower_bound(beg, end, val, cmp)
upper_bound(beg, end, val)
upper_bound(beg, end, val, cmp)
equal_range(beg, end, val)
equal_range(beg, end, val, cmp)
binary_search(beg, end, val)
binary_search(beg, end, val, cmp)

老熟了。在序列lower_bound返回第一个大于等于val的位置,upper_bound返回第一个大于val的位置,equal_range相当于前两个加在一起,返回一个pair,即两个函数的结果组合,包含一个值与val全部相等的区间。

如std::vector<int> a = {1, 2, 3, 3, 3, 4, 5},lowerbound返回a.begin()+2,upperbound返回a.begin()+5,equal_range返回pair{a.begin()+2, a.begin()+5}。

binary_search只回答序列里是否存在val,存在则返回true,不存在返回false。

以上函数操作自定义结构时都只使用<号,可以使用可选的自定义cmp函数

D. 只写算法

fill(beg, end, val)
fill_n(dest, cnt, val)
generate(beg, end, gen)
generate_n(dest, cnt, gen)

fill和fill_n为区间所有元素赋值val,他们给出区间所用的参数不一样。generate不断执行gen函数,将返回值逐个赋值给区间。普通版本无返回值,_n版本返回尾指针。

move(beg, end, dest)
copy(beg, end, dest)
copy_n(beg, n, dest)
copy_if(beg, end, dest, func1)

copy和copy_n将范围元素全部拷贝到dest,copy_if拷贝符合条件的分数。在C++中,应该使尽量使用std::fill和std::copy替代memset和memcpy。

move移动整个序列,对序列每个值调用std::move(右值转化),移动到dest。

transform(beg, end, dest, func1)
transform(beg1, end1, beg2, dest, func2)

将序列元素调用func1后存入dest,第二个版本对两个序列调用func2后将结果存入dest。

merge(beg1, end1, beg2, end2, dest, cmp)
inplace_merge(beg, mid, end, cmp)

merge将两个有序序列合并,输出到dest,cmp是可选的自定义比较函数。这个函数相等于归并排序的合并阶段。

inplace_merge将左右的有序序列在原序列中执行合并操作,cmp是可选的自定义比较函数。

iter_swap(iter1, iter2)
swap_ranges(beg1, end1, beg2)

iter_swap交换两个迭代器指向的元素,swap_ranges一一交换两个序列。

replace(beg, end, oldval, newval)
replace_if(beg, end, func1, newval)
replace_copy(beg, end, beg2, oldval, newval)
replace_copy_if(beg, end, beg2, func1, newval)

将序列中的oldval(或者满足func1)的元素替换为newval,copy版本将元素写进新序列

copy_backward(beg, end, dest)
move_backward(beg, end, dest)

将序列元素从end开始倒序拷贝(或移动)到dest(dest仍是正序,也就是说它应该给定一个新序列尾位置)

iota(beg, end, val)

将val赋值给beg,再把++val依次赋值给下一个元素,直到赋值完整个序列。

E. 划分和排序

划分

partition(beg, end, func1)
stable_partition(beg, end, func1)
partition_copy(beg, end, beg2, beg3, func1)
partition_point(beg, end, func1)
is_partitioned(beg, end, func1)

将序列划分成前后两段,满足func1的放在前面,不满足的放在后面,返回分界点位置。stable版本保证相同元素的顺序不发生改变。copy版本将满足func1的输入新序列beg2,不满足的输入beg3。

partition_point返回已经划分好的元素的分界点,is_partitioned返回序列是否划分好。

排序

sort(beg, end, cmp)
stable_sort(beg, end, cmp)

将序列排序,默认使用<号,可以使用可选的cmp自定义函数。stable版本保证相等元素的顺序在操作后不改变

is_sorted(beg, end, cmp)
is_sorted_until(beg, end, cmp)

is_sorted返回bool值,表示是否已经排好序。is_sorted_until寻找从起点开始的最长有序序列,返回尾位置。

partial_sort(beg, mid, end, cmp)
partial_sort_copy(beg, end, beg2, end2, cmp)
nth_element(beg, nth, end, cmp)

partial_sort部分排序,将前mid-beg小的元素填充到beg~mid中,copy版本将这些元素输出到新序列中。

nth_element是另一类部分排序,参数nth是一个位置,函数将围绕nth部分排序,nth之前的元素都小于它,nth之后的都大于他

int a[] = {6, 7, 2, 3, 4, 9};
nth_element(a, a+3, a+6);//a = {4, 3, 2, 6, 7, 9},围绕第4位排序

F. 重排算法

remove(beg, end, val)
remove_if(beg, end, func1)
remove_copy(beg, end, dest, val)
remove_copy_if(beg, end, dest, func1)

remove和remove_if移除序列中指定元素或满足func1的函数。移除的方式是将之后的元素往前移动,因此是线性复杂度,不过之后的元素不会被消除。返回尾位置。copy版本将元素输出到新序列。

int a[] = {6, 7, 2, 3, 4, 9};
std::remove(a, a+6, 2); // 6 7 3 4 9 | 9
unique(beg, end, val)
unique_if(beg, end, func2)
unique_copy(beg, end, dest, val)
unique_copy_if(beg, end, dest, func2)

将已经排好序的序列中删除相邻元素,返回尾位置,用==运算符或func2判断相等,多余的元素被swap到尾位置之后。copy版本将元素输出到新序列。

int a[] = {1, 2, 2, 3, 3, 4};
std::remove(a, a+6, 2); // 1 2 3 4 | 2 3
rotate(beg, mid, end)
rotate_copy(beg, mid, end, dest)

将序列循环右移,将mid成为beg处首元素,mid之前的元素循环到end处。copy版本将元素输出到新序列。

reverse(beg, end)
reverse_copy(beg, end, dest)

翻转序列元素,不必多说。copy版本将元素输出到新序列。

random_shuffle(beg, end)
random_shuffle(beg, end, rand)
shuffle(beg, end, func)

随机打乱序列,可以带入自定义随机函数rand,或者外部传入随机数生成器func。

G. 排列

is_permutation(beg, end, beg2, cmp)
prev_permutation(beg, end, cmp)
next_permutation(beg, end, cmp)

is_permutation求解两个序列是否互为排列。具体来说,若两个序列拥有相同元素且同一种元素个数都相等,就是真,否则是假。
prev_permutation和next_permutation返回序列的上一个或者下一个排列(字典序意义),如果已经是最后一个排列,则循环到第一个排列,反之亦然。

int a[] = {1, 2, 3, 4};
for (int i = 0; i <= 24; ++i) {
	std::next_permutation(a, a+4);
	for (int x: a) std::cout << x; // 1234->1243->1324->1342->1423....->4321->1234
}

H. 集合算法

这些算法用的比较少,将有序序列视作集合,执行一些集合操作。

includes(beg, end, beg2, end2, cmp)
set_union(beg, end, beg2, end2, dest, cmp)
set_intersection(beg, end, beg2, end2, dest, cmp)
set_difference(beg, end, beg2, end2, dest, cmp)
set_symmetric_difference(beg, end, beg2, end2, dest, cmp)

include判断第二个序列是否包含在第一个序列中。

set_union和set_intersection求集合的并集和交集,set_difference求只在第一个集合,不在第二个集合中的函数。set_symmetric_difference求只出现在一边的元素。他们都将结果输出到dest,返回dest的尾位置。默认使用<,可以使用自定cmp函数。

I. 杂项

min({list})
max({list})
minmax({list})

双元素版本就不放了,现在min和max可以以列表形式支持变长参数了,如min({1,2,3})的形式,而minmax返回一个pair,fisrt和second分别代表最小和最大值。

min_element(beg, end, cmp)
max_element(beg, end, cmp)
minmax_element(beg, end, cmp)

对序列求最值,返回的不是值,是指向目标值的指针或迭代器。可以使用自定cmp函数

lexicographical_compare(beg1, end1, beg2, end2, cmp)

比较两个序列的字典序,一次调用每个元素的<或cmp函数比较,若都相等则较短的序列更小,若长度也一样返回false。

accumulate(beg, end, init, func2)
inner_product(beg, end, beg2, init, func21, func22)

accumulate即字面意义“求和”,对序列从左往右求和,init为初始值,决定了返回值类型,默认调用+,可以自定函数;inner_product即字面意义“求内积”,将两个序列元素相乘再相加,默认调用*和+,两个函数都可以自定义。

int a[] = {1, 2, 4, 5, 90};
int xorans = std::accumulate(a, a+5, [](int x, int y){
	return x ^ y;
});// 求异或和
partial_sum(beg, end, dest, func2)
adjacent_difference(beg, end, dest, func2)

字面意思,第一个求前缀和,第二个求差分,将结果输出到dest。默认使用+或-,可以自定义

总结

到此这篇关于C++序列操作函数学习指南的文章就介绍到这了,更多相关C++序列操作函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++计算整数序列的最长递增子序列的长度操作

    给定一个整数序列,计算其中的最长递增子序列的长度,这是一个典型的动态规划的算法. 比如8个整数的序列 186 186 150 200 160 130 197 200,最长递增子序列是 150 160 197 200, 长度为4. 想要解决此问题,可以把这个大问题分解为小问题,依次考虑每个数,计算出包含该数数和该数之前的所有数的最长递增子序列的长度,计算出的长度值作为该数的对应值记录下来,最后可以得到这8个数对应的长度值序列,也是8个数,找到这8个数中的最大值就是所有书的最长递增子序列的长度. 或

  • C++实现二叉树遍历序列的求解方法

    本文详细讲述了C++实现二叉树遍历序列的求解方法,对于数据结构与算法的学习有着很好的参考借鉴价值.具体分析如下: 一.由遍历序列构造二叉树 如上图所示为一个二叉树,可知它的遍历序列分别为: 先序遍历:ABDECFG 中序遍历:DBEAFCG 后序遍历:DEBFGCA 我们需要知道的是,由二叉树的先序序列和中序序列可以唯一地确定一棵二叉树:由二叉树的后序序列和中序序列也可以唯一地确定一棵二叉树:但是如果只知道先序序列和后序序列,则无法唯一确定一棵二叉树. 二.已知二叉树的先序序列和中序序列,求后序

  • C++序列操作函数学习最全指南

    目录 前言 A.查找算法 简单查找 查找重复值 查找子序列 B.其他只读算法 C.二分查找算法 D.只写算法 E.划分和排序 划分 排序 F.重排算法 G.排列 H.集合算法 I.杂项 总结 前言 标准库定义了许多用于操作序列的算法,大多在algorithm和numeric文件中,大多数函数的原理并不复杂,但是在很多情况下可以替代手写的情况,甚至更加优秀. 这类算法函数非常多,但是他们都有共同的结构,类似的参数特性,所以非常好记忆.比如我们最经典的std::sort(beg, end, cmp)

  • C++函数模板学习示例教程指南

    目录 C++函数模板学习指南 1. 函数模板的定义 2. 函数模板的使用 3. 函数模板的特化 4. 函数模板的偏特化 6. 非类型模板参数 7. 函数模板的局限性 总结 C++函数模板学习指南 C++函数模板是一种高效的代码复用机制,它允许我们定义一种可以用于多种类型的函数,而不必为每种类型都编写一个函数.本篇文章将介绍C++函数模板的基本使用.我们将逐步讨论函数模板的定义.使用.特化和偏特化. 1. 函数模板的定义 函数模板的定义基本语法如下: template <typename T>

  • Python常见字符串操作函数小结【split()、join()、strip()】

    本文实例讲述了Python常见字符串操作函数.分享给大家供大家参考,具体如下: str.split(' ') 1.按某一个字符分割,如'.' >>> s = ('www.google.com') >>> print(s) www.google.com >>> s.split('.') ['www', 'google', 'com'] 2.按某一个字符分割,且分割n次.如按'.'分割1次:参数maxsplit位切割的次数 >>> s =

  • JavaScript数组操作函数汇总

    js中数组操作函数还是非常多的,今天忽然想到来总结一下,也算是温故而知新吧.不过不会针对每个办法都进行一下总结,只是针对一些比较常用的做个备注一下. 这里总结到的 js 数组操作函数有:push,pop,join,shift,unshift,slice,splice,concat (1)push 和 pop 这两个函数都是对数组从尾部进行压入或弹出操作.push(arg1,arg2,...)可以每次压入一个或多个元素,并返回更新后的数组长度.注意如果参数也是数组的话,则是将全部数组当做一个元素压

  • PHP常用的文件操作函数经典收藏

    以下是个人总结的PHP文件操作函数.当然,这只是部分,还有很多,我没有列出来. 一 .解析路径: 1 获得文件名: basename(); 给出一个包含有指向一个文件的全路径的字符串,本函数返回基本的文件名.如果文件名是以 suffix 结束的,那这一部分也会被去掉. eg: 复制代码 代码如下: $path = "/home/httpd/html/index.php"; $file = basename($path,".php"); // $file is set

  • Python编程之序列操作实例详解

    本文实例讲述了Python编程之序列操作.分享给大家供大家参考,具体如下: #coding=utf8 ''''' 序列类型有着相同的访问模式:它的每一个元素可以通过指定一个偏移量的方式得到. 可以通过切片操作一次获得多个元素. 序列的下标偏移量是从0开始到总元素数减一结束. 标准类型操作符一般都能试用与所有的序列类型. 序列类型操作符: --------------------------------------------------------------------------- 序列操作

  • C# SQLite序列操作实现方法详解

    本文实例讲述了C# SQLite序列操作实现方法.分享给大家供大家参考,具体如下: sqlite 不能直接创建自定义函数,不能像 sql server中那样方便创建并使用.不过我们照样可以创建它,创建成功后,我们照样可以随心所欲(比如批量更新等) 序列是一个数据库中很常用的操作,在其它关系型数据库创建是相当简单的,但Sqlite不是很方便,因为它不能直接创建自定义函数 1.先创建一个表示序列的表: CREATE TABLE SEQUENCE ( SEQ_NAME VARCHAR(50) NOT

  • JavaScript中常见的字符串操作函数及用法汇总

    本文实例总结了JavaScript中常见的字符串操作函数及用法.分享给大家供大家参考.具体分析如下: 最近几次参加前端实习生招聘的笔试,发现很多笔试题都会考到字符串的处理,比方说去哪儿网笔试题.淘宝的笔试题等.如果你经常参加笔试或者也是一个过来人,相信你也跟我一样,发现字符串的处理是前端招聘过程中最常见的题型之一.这些题有一个特点,站在考官的角度去考虑,它考的不是你会不会,而是你能不能在不借用XX手册或者XX指南再或者百度谷歌的情况下,用比较简洁的方式写出答案来.可惜的是,很多开发人员,当然我也

  • php文件夹与文件目录操作函数介绍

    php文件夹操作函数 string basename ( string path [, string suffix] )给出一个包含有指向一个文件的全路径的字符串,本函数返回基本的文件名.如果文件名是以 suffix 结束的,那这一部分也会被去掉.在 Windows 中,斜线(/)和反斜线()都可以用作目录分隔符.在其它环境下是斜线(/). string dirname ( string path ) 给出一个包含有指向一个文件的全路径的字符串,本函数返回去掉文件名后的目录名.在 Windows

  • Python使用Pickle库实现读写序列操作示例

    本文实例讲述了Python使用Pickle库实现读写序列操作.分享给大家供大家参考,具体如下: 简介 pickle模块实现了用于对Python对象结构进行序列化和反序列化的二进制协议."Pickling"是将Python对象转换为字节流的过程,"unpickling"是反向操作,由此字节流二进制文件或字节对象)转换回对象结构. 模块方法 pickle.dump(obj, file, protocol=None, *, fix_imports=True) 将obj以二

随机推荐