java 百度手写文字识别接口配置代码

代码如下所示:

package org.fh.util;
import org.json.JSONObject;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.List;
import java.util.Map;
/**
 * 说明:获取文字识别token类
 * 作者:FH Admin
 * from:fhadmin.cn
 */
public class AuthTextService {
    /**
     * 获取权限token
     * @return 返回示例:
     * {
     * "access_token": "xxxxxxx",
     * "expires_in": 2592000
     * }
     */
    public static String getAuth() {
        // 官网获取的 API Key 更新为你注册的
        String clientId = "xxxxxxxx";
        // 官网获取的 Secret Key 更新为你注册的
        String clientSecret = "xxxxxxxxxxx";
        return getAuth(clientId, clientSecret);
    }
    /**
     * 获取API访问token
     * 该token有一定的有效期,需要自行管理,当失效时需重新获取.
     * @param ak - 百度云官网获取的 API Key
     * @param sk - 百度云官网获取的 Securet Key
     * @return assess_token 示例:
     * "24.460da4889caad24cccdb1fea17xxxxx"
     */
    public static String getAuth(String ak, String sk) {
        // 获取token地址
        String authHost = "https://aip.baidubce.com/oauth/2.0/token?";
        String getAccessTokenUrl = authHost
                // 1. grant_type为固定参数
                + "grant_type=client_credentials"
                // 2. 官网获取的 API Key
                + "&client_id=" + ak
                // 3. 官网获取的 Secret Key
                + "&client_secret=" + sk;
        try {
            URL realUrl = new URL(getAccessTokenUrl);
            // 打开和URL之间的连接
            HttpURLConnection connection = (HttpURLConnection) realUrl.openConnection();
            connection.setRequestMethod("GET");
            connection.connect();
            // 获取所有响应头字段
            Map<String, List<String>> map = connection.getHeaderFields();
            // 遍历所有的响应头字段
            for (String key : map.keySet()) {
                System.err.println(key + "--->" + map.get(key));
            }
            // 定义 BufferedReader输入流来读取URL的响应
            BufferedReader in = new BufferedReader(new InputStreamReader(connection.getInputStream()));
            String result = "";
            String line;
            while ((line = in.readLine()) != null) {
                result += line;
            }
            /**
             * 返回结果示例
             */
            System.err.println("result:" + result);
            JSONObject jsonObject = new JSONObject(result);
            String access_token = jsonObject.getString("access_token");
            return access_token;
        } catch (Exception e) {
            System.err.printf("获取token失败!");
            e.printStackTrace(System.err);
        }
        return null;
    }
}

到此这篇关于java 百度手写文字识别接口配置代码的文章就介绍到这了,更多相关java手写文字识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java使用Tessdata做OCR图片文字识别的详细思路

    说到文字识别,目前除了用一些现成的api,大概就是 tessdata.canvas或者 ocrad等. 1.百度接口用过(可以自己去百度开发者申请,免费的),识别率吧,还可以,但也不是百分百的,但是次数使用有限制,虽然也是够用,但是被限制总是害怕超过不让用. 2.canvas的话是需要对图片做具体的处理,涉及到图片的翻转.置灰.文字间隔的设定等等,成功率很高,但是公司产品验证码是各式各样的,没办法用这种方法处理,所以暂时放弃了. 3.ocrad这个目前用过其.js版本,识别率还是比较低的,具体使

  • java实现百度云文字识别接口代码

    本文实例为大家分享了java实现百度云文字识别的接口具体代码,供大家参考,具体内容如下 public class Images { public static String getResult() { String otherHost = "https://aip.baidubce.com/rest/2.0/ocr/v1/general"; // 本地图片路径 String str="你的本地图片路径" String filePath = "str&quo

  • JAVA演示阿里云图像识别API,印刷文字识别-营业执照识别

    最近有由于需要,我开始接触阿里云的云市场的印刷文字识别-营业执照识别这里我加上了官网的申请说明,只要你有阿里云账号就可以用,前500次是免费的,API说明很简陋,只能做个简单参考. 一.API介绍 JAVA示例: public static void main(String[] args) { String host = "https://dm-58.data.aliyun.com"; String path = "/rest/160601/ocr/ocr_business_

  • 不到十行实现javaCV图片OCR文字识别

    spring boot项目pom文件中添加以下依赖 <!-- https://mvnrepository.com/artifact/org.bytedeco/javacv-platform --> <dependency> <groupId>org.bytedeco</groupId> <artifactId>javacv-platform</artifactId> <version>1.5.5</version&g

  • java实现百度云OCR文字识别 高精度OCR识别身份证信息

    本文为大家分享了java实现百度云OCR识别的具体代码,高精度OCR识别身份证信息,供大家参考,具体内容如下 1.通用OCR文字识别 这种OCR只能按照识别图片中的文字,且是按照行识别返回结果,精度较低. 首先引入依赖包: <dependency> <groupId>com.baidu.aip</groupId> <artifactId>java-sdk</artifactId> <version>4.6.0</version&

  • java 百度手写文字识别接口配置代码

    代码如下所示: package org.fh.util; import org.json.JSONObject; import java.io.BufferedReader; import java.io.InputStreamReader; import java.net.HttpURLConnection; import java.net.URL; import java.util.List; import java.util.Map; /** * 说明:获取文字识别token类 * 作者:

  • PyTorch实现手写数字识别的示例代码

    目录 加载手写数字的数据 数据加载器(分批加载) 建立模型 模型训练 测试集抽取数据,查看预测结果 计算模型精度 自己手写数字进行预测 加载手写数字的数据 组成训练集和测试集,这里已经下载好了,所以download为False import torchvision # 是否支持gpu运算 # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # print(device) # print(torch.cud

  • Java实现手写自旋锁的示例代码

    目录 前言 自旋锁 原子性 自己动手写自旋锁 自己动手写可重入自旋锁 总结 前言 我们在写并发程序的时候,一个非常常见的需求就是保证在某一个时刻只有一个线程执行某段代码,像这种代码叫做临界区,而通常保证一个时刻只有一个线程执行临界区的代码的方法就是锁.在本篇文章当中我们将会仔细分析和学习自旋锁,所谓自旋锁就是通过while循环实现的,让拿到锁的线程进入临界区执行代码,让没有拿到锁的线程一直进行while死循环,这其实就是线程自己“旋”在while循环了,因而这种锁就叫做自旋锁. 自旋锁 原子性

  • Java实现手写线程池的示例代码

    目录 前言 线程池给我们提供的功能 工具介绍 Worker设计 线程池设计 总结 前言 在我们的日常的编程当中,并发是始终离不开的主题,而在并发多线程当中,线程池又是一个不可规避的问题.多线程可以提高我们并发程序的效率,可以让我们不去频繁的申请和释放线程,这是一个很大的花销,而在线程池当中就不需要去频繁的申请线程,他的主要原理是申请完线程之后并不中断,而是不断的去队列当中领取任务,然后执行,反复这样的操作.在本篇文章当中我们主要是介绍线程池的原理,因此我们会自己写一个非常非常简单的线程池,主要帮

  • 基于TensorFlow的CNN实现Mnist手写数字识别

    本文实例为大家分享了基于TensorFlow的CNN实现Mnist手写数字识别的具体代码,供大家参考,具体内容如下 一.CNN模型结构 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积:感受视野5*5,步长为1,卷积核:64个 第二层池化:池化视野2*2,步长为2 全连接层:设置1024个神经元 输出层:0~9十个数字类别 二.代码实现 import tensorflow as tf #Tensorfl

  • python神经网络编程实现手写数字识别

    本文实例为大家分享了python实现手写数字识别的具体代码,供大家参考,具体内容如下 import numpy import scipy.special #import matplotlib.pyplot class neuralNetwork: def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate): self.inodes=inputnodes self.hnodes=hiddennodes self.onodes

  • caffe的python接口之手写数字识别mnist实例

    目录 引言 一.数据准备 二.导入caffe库,并设定文件路径 二.生成配置文件 三.生成参数文件solver 四.开始训练模型 五.完成的python文件 引言 深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 视觉层及参数 solver配置文件及参数 一.数据准备 官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片.因此有些

  • Java实现BP神经网络MNIST手写数字识别的示例详解

    目录 一.神经网络的构建 二.系统架构 服务器 客户端 采用MVC架构 一.神经网络的构建 (1):构建神经网络层次结构 由训练集数据可知,手写输入的数据维数为784维,而对应的输出结果为分别为0-9的10个数字,所以根据训练集的数据可知,在构建的神经网络的输入层的神经元的节点个数为784个,而对应的输出层的神经元个数为10个.隐层可选择单层或多层. (2):确定隐层中的神经元的个数 因为对于隐层的神经元个数的确定目前还没有什么比较完美的解决方案,所以对此经过自己查阅书籍和上网查阅资料,有以下的

  • 如何将tensorflow训练好的模型移植到Android (MNIST手写数字识别)

    [尊重原创,转载请注明出处]https://blog.csdn.net/guyuealian/article/details/79672257 项目Github下载地址:https://github.com/PanJinquan/Mnist-tensorFlow-AndroidDemo 本博客将以最简单的方式,利用TensorFlow实现了MNIST手写数字识别,并将Python TensoFlow训练好的模型移植到Android手机上运行.网上也有很多移植教程,大部分是在Ubuntu(Linu

随机推荐