python实现杨辉三角的几种方法代码实例

方法一:迭代

def triangle_1(x):
 """
 :param x: 需要生成的杨辉三角行数
 :return:
 """
 triangle = [[1], [1, 1]] # 初始化杨辉三角
 n = 3 # 从第三行开始计数,逐行添加
 while n <= x:
  for i in range(0, n-1):
   if i == 0:
    # 添加初始列表[1,1],杨辉三角每行的首位和末位必为1
    triangle.append([1, 1])
   else:
    # 逐位计算,并插入初始列表中
    triangle[n-1].insert(i, triangle[n - 2][i] + triangle[n - 2][i - 1])
  n += 1
 return triangle
x = 11
triangle = triangle_1(x)

# 遍历结果,逐行打印
for i in range(x):
 print(' '.join(str(triangle[i])).center(100)) # 转为str,居中显示

方法二:生成器

def triangle_2(n):
 """
 :param n: 需要生成的杨辉三角行数
 :return:
 """
 triangle = [1] # 初始化杨辉三角
 for i in range(n):
  yield triangle
  triangle.append(0) # 在最后一位加个0,用于计算下一行
  triangle = [triangle[i] + triangle[i - 1] for i in range(len(triangle))]
# 从生成器取值
for i in triangle_5(10):
 print(''.join(str(i)).center(100)) # 格式化输出

方法三:递归

杨辉三角特性:

【1,1】=【0,1】+【1,0】

【1,2,1】=【0,1,1】+【1,1,0】

【1,3,3,1】=【0,1,2,1】+【1,2,1,0】

【1,4,6,4,1】=【0,1,3,3,1】+【1,3,3,1,0】

第n行等于第n-1行分别首尾补0,然后按位相加

def triangle_4(n):
 """
 :param n:需要生成的杨辉三角行数
 :return:
 """
 triangle = [1] # 初始化杨辉三角
 if n == 0:
  return triangle
 return [x+y for x, y in zip([0] + triangle_4(n - 1), triangle_4(n - 1) + [0])]
for i in range(10):
 print(''.join(str(triangle_4(i))).center(100)) 

到此这篇关于python实现杨辉三角的几种方法代码实例的文章就介绍到这了,更多相关python实现杨辉三角内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 使用python生成杨辉三角形的示例代码

    杨辉三角杨辉 定义如下: 1 / \ 1 1 / \ / \ 1 2 1 / \ / \ / \ 1 3 3 1 / \ / \ / \ / \ 1 4 6 4 1 / \ / \ / \ / \ / \ 1 5 10 10 5 1 把每一行看做一个list,试写一个generator,不断输出下一行的list: def triangles(): L = [1] while True: yield L M=L[:]#复制一个list,这样才不会影响到原有的list.不然results里的每个列表

  • 用Python输出一个杨辉三角的例子

    关于杨辉三角是什么东西,右转维基百科:杨辉三角 稍微看一下直观一点的图: 复制代码 代码如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 11 8 28 56 70 56 28 8 1 杨辉三角有以下几个特点: 每一项的值等于他左上角的数和右上角的数的和,如果左上角或者右上角没有数字,就按0计算.第N层项数总比N-1层多1个 计算第N层的杨辉三角,必须知道N-1层的数字,然后将相邻

  • python实现杨辉三角思路

    程序输出需要实现如下效果: [1] [1,1] [1,2,1] [1,3,3,1] ...... 方法:迭代,生成器 def triangles() L = [1] while True: yiled L L =[1] + [L[i] + L[I+1] for i in range(len(L)-1)] + [1] n = 0 for t in triangles(): print(t) n += 1 if n == 10: break 实现逻辑: 1.由于yield为生成器中断输出,所以有了第

  • Python极简代码实现杨辉三角示例代码

    杨辉三角,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列. 把每一行看做一个list,写一个generator,不断输出下一行的list 实现下列输出效果: # [1] # [1, 1] # [1, 2, 1] # [1, 3, 3, 1] # [1, 4, 6, 4, 1] # [1, 5, 10, 10, 5, 1] # [1, 6, 15, 20, 15, 6, 1] # [1, 7, 21, 35, 35, 21, 7, 1] # [1, 8, 28, 56, 70,

  • python 生成器生成杨辉三角的方法(必看)

    用Python写趣味程序感觉屌屌的,停不下来 #生成器生成展示杨辉三角 #原理是在一个2维数组里展示杨辉三角,空的地方用0,输出时,转化为' ' def yang(line): n,leng=0,2*line - 1 f_list = list(range(leng+2)) #预先分配,insert初始胡会拖慢速度,最底下一行,左右也有1个空格 #全部初始化为0 for i,v in enumerate(f_list): f_list[v] = 0 ZEROLIST = f_list[:] #预

  • 使用python打印十行杨辉三角过程详解

    杨辉三角,是二项式系数在三角形中的一种几何排列 每个数等于它上方两数之和. 每行数字左右对称,由1开始逐渐变大. 第n行的数字有n项. 第n行数字和为2n-1. 第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数. 第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一. 每个数字等于上一行的左右两个数字之和.可用此性质写出整个杨辉三角.即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一.即 C(n+1,i)=C(n

  • python实现杨辉三角的几种方法代码实例

    方法一:迭代 def triangle_1(x): """ :param x: 需要生成的杨辉三角行数 :return: """ triangle = [[1], [1, 1]] # 初始化杨辉三角 n = 3 # 从第三行开始计数,逐行添加 while n <= x: for i in range(0, n-1): if i == 0: # 添加初始列表[1,1],杨辉三角每行的首位和末位必为1 triangle.append([1, 1

  • java获取当前时间的四种方法代码实例

    这篇文章主要介绍了java获取当前时间的四种方法代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 第一种:Date类 public class DateDemo { public static void main(String[] args) { Date day = new Date(); SimpleDateFormat dft = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); S

  • PHP生成短网址的3种方法代码实例

    短网址服务,可能很多朋友都已经不再陌生,现在大部分微博.手机邮件提醒等地方已经有很多应用模式了,并占据了一定的市场.估计很多朋友现在也正在使用. 看过新浪的短连接服务,发现后面主要有6个字符串组成. 太多算法的东西,也没必要去探讨太多,最主要的还是实现,下面是三种方法的代码: <?php //纯随机生成方法 function random($length, $pool = '') { $random = ''; if (empty($pool)) { $pool = 'abcdefghkmnpq

  • Java添加事件监听的四种方法代码实例

    Java添加事件的几种方式(转载了codebrother的文章,做了稍微的改动): /** * Java事件监听处理--自身类实现ActionListener接口,作为事件监听器 * * @author codebrother */ class EventListener1 extends JFrame implements ActionListener { private JButton btBlue, btDialog; public EventListener1() { setTitle(

  • 用Python生成N层的杨辉三角的实现方法

    [杨辉三角简介]   杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形. [代码实现] n = eval(input("请问你想生成几层的杨辉三角呢?")) result= [] def fun(N): # 杨辉三角生成函数 if N == 1: result.append([1]) elif N == 2: result.append([1]) result.append([1,1]) else: result.append([1]) result.ap

  • java编程实现杨辉三角两种输出结果实例代码

    首先展示下结果: 简介: 杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形.帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年.杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的优美结合. 实例代码如下: package com.sxt; import java.util.Arrays; public class KeBen { p

随机推荐