C++实现LeetCode(95.独一无二的二叉搜索树之二)

[LeetCode] 95. Unique Binary Search Trees II 独一无二的二叉搜索树之二

Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ... n.

Example:

Input: 3
Output:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST's shown below:

   1         3     3      2      1
\       /     /      / \      \
3     2     1      1   3      2
/     /       \                 \
2     1         2                 3

这道题是之前的 Unique Binary Search Trees 的延伸,之前那个只要求算出所有不同的二叉搜索树的个数,这道题让把那些二叉树都建立出来。这种建树问题一般来说都是用递归来解,这道题也不例外,划分左右子树,递归构造。这个其实是用到了大名鼎鼎的分治法 Divide and Conquer,类似的题目还有之前的那道 Different Ways to Add Parentheses 用的方法一样,用递归来解,划分左右两个子数组,递归构造。刚开始时,将区间 [1, n] 当作一个整体,然后需要将其中的每个数字都当作根结点,其划分开了左右两个子区间,然后分别调用递归函数,会得到两个结点数组,接下来要做的就是从这两个数组中每次各取一个结点,当作当前根结点的左右子结点,然后将根结点加入结果 res 数组中即可,参见代码如下:

解法一:

class Solution {
public:
    vector<TreeNode*> generateTrees(int n) {
        if (n == 0) return {};
        return helper(1, n);
    }
    vector<TreeNode*> helper(int start, int end) {
        if (start > end) return {nullptr};
        vector<TreeNode*> res;
        for (int i = start; i <= end; ++i) {
            auto left = helper(start, i - 1), right = helper(i + 1, end);
            for (auto a : left) {
                for (auto b : right) {
                    TreeNode *node = new TreeNode(i);
                    node->left = a;
                    node->right = b;
                    res.push_back(node);
                }
            }
        }
        return res;
    }
};

我们可以使用记忆数组来优化,保存计算过的中间结果,从而避免重复计算。注意这道题的标签有一个是动态规划 Dynamic Programming,其实带记忆数组的递归形式就是 DP 的一种,memo[i][j] 表示在区间 [i, j] 范围内可以生成的所有 BST 的根结点,所以 memo 必须是一个三维数组,这样在递归函数中,就可以去 memo 中查找当前的区间是否已经计算过了,是的话,直接返回 memo 中的数组,否则就按之前的方法去计算,最后计算好了之后要更新 memo 数组,参见代码如下:

解法二:

class Solution {
public:
    vector<TreeNode*> generateTrees(int n) {
        if (n == 0) return {};
        vector<vector<vector<TreeNode*>>> memo(n, vector<vector<TreeNode*>>(n));
        return helper(1, n, memo);
    }
    vector<TreeNode*> helper(int start, int end, vector<vector<vector<TreeNode*>>>& memo) {
        if (start > end) return {nullptr};
        if (!memo[start - 1][end - 1].empty()) return memo[start - 1][end - 1];
        vector<TreeNode*> res;
        for (int i = start; i <= end; ++i) {
            auto left = helper(start, i - 1, memo), right = helper(i + 1, end, memo);
            for (auto a : left) {
                for (auto b : right) {
                    TreeNode *node = new TreeNode(i);
                    node->left = a;
                    node->right = b;
                    res.push_back(node);
                }
            }
        }
        return memo[start - 1][end - 1] = res;
    }
};

到此这篇关于C++实现LeetCode(95.独一无二的二叉搜索树之二)的文章就介绍到这了,更多相关C++实现独一无二的二叉搜索树之二内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++实现LeetCode(137.单独的数字之二)

    [LeetCode] 137. Single Number II 单独的数字之二 Given a non-empty array of integers, every element appears three times except for one, which appears exactly once. Find that single one. Note: Your algorithm should have a linear runtime complexity. Could you

  • C++实现LeetCode(187.求重复的DNA序列)

    [LeetCode] 187. Repeated DNA Sequences 求重复的DNA序列 All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACGAATTCCG". When studying DNA, it is sometimes useful to identify repeated sequences within the DNA. Wr

  • C++实现LeetCode(136.单独的数字)

    [LeetCode] 136.Single Number 单独的数字 Given a non-empty array of integers, every element appears twice except for one. Find that single one. Note: Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?

  • C++实现LeetCode(87.搅乱字符串)

    [LeetCode] 87. Scramble String 搅乱字符串 Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively. Below is one possible representation of s1 = "great":     great /    \ gr    eat / \    /  \

  • C++实现LeetCode(89.格雷码)

    [LeetCode] 89.Gray Code 格雷码 The gray code is a binary numeral system where two successive values differ in only one bit. Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code se

  • C++实现LeetCode(93.复原IP地址)

    [LeetCode] 93.Restore IP Addresses 复原IP地址 Given a string containing only digits, restore it by returning all possible valid IP address combinations. Example: Input: "25525511135" Output: ["255.255.11.135", "255.255.111.35"] 这

  • C++实现LeetCode(91.解码方法)

    [LeetCode] 91. Decode Ways 解码方法 A message containing letters from A-Z is being encoded to numbers using the following mapping: 'A' -> 1 'B' -> 2 ... 'Z' -> 26 Given a non-empty string containing only digits, determine the total number of ways to

  • C++实现LeetCode(96.独一无二的二叉搜索树)

    [LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树 Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Example: Input: 3 Output: 5 Explanation: Given n = 3, there are a total of 5 unique BST's: 1         3  

  • C++实现LeetCode(95.独一无二的二叉搜索树之二)

    [LeetCode] 95. Unique Binary Search Trees II 独一无二的二叉搜索树之二 Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ... n. Example: Input: 3 Output: [ [1,null,3,2], [3,2,null,1], [3,1,null,null,2], [2,1,3],

  • Java数据结构之二叉搜索树详解

    目录 前言 性质 实现 节点结构 初始化 插入节点 查找节点 删除节点 最后 前言 今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不变,做完之后,我觉得这道题将二叉搜索树特性凸显的很好,首先需要查找指定节点,然后删除节点并且保持二叉搜索树性质不变,就想利用这个题目讲讲二叉搜索树. 二叉搜索树作为一个经典的数据结构,具有链表的快速插入与删除的特点,同时查询效率也很优秀,所以应用十分广泛,例如在文件系统和数据库系统一般会采用这种数

  • 利用java实现二叉搜索树

    二叉搜索树的定义 它是一颗二叉树 任一节点的左子树上的所有节点的值一定小于该节点的值 任一节点的右子树上的所有节点的值一定大于该节点的值 特点: 二叉搜索树的中序遍历结果是有序的(升序)! 实现一颗二叉搜索树 实现二叉搜索树,将实现插入,删除,查找三个方面 二叉搜索树的节点是不可以进行修改的,如果修改,则可能会导致搜索树的错误 二叉搜索树的定义类 二叉搜索树的节点类 -- class Node 二叉搜索树的属性:要找到一颗二叉搜索树只需要知道这颗树的根节点. public class BST {

  • Java 求解如何把二叉搜索树转换为累加树

    一.题目 给出二叉搜索树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和. 提醒一下,二叉搜索树满足下列约束条件: 节点的左子树仅包含键 小于 节点键的节点. 节点的右子树仅包含键 大于 节点键的节点. 左右子树也必须是二叉搜索树. 二.题解 观察示例图发现,树的遍历顺序为右,中,左的顺序,每个节点的值,是按照这个顺序累加的状态 由于是需要累加,所以需要pre指针记录当前遍历节点

  • Java数据结构超详细分析二叉搜索树

    目录 1.搜索树的概念 2.二叉搜索树的简单实现 2.1查找 2.2插入 2.3删除 2.4修改 3.二叉搜索树的性能 1.搜索树的概念 二叉搜索树是一种特殊的二叉树,又称二叉查找树,二叉排序树,它有几个特点: 如果左子树存在,则左子树每个结点的值均小于根结点的值. 如果右子树存在,则右子树每个结点的值均大于根结点的值. 中序遍历二叉搜索树,得到的序列是依次递增的. 二叉搜索树的左右子树均为二叉搜索树. 二叉搜索树的结点的值不能发生重复. 2.二叉搜索树的简单实现 我们来简单实现以下搜索树,就不

  • JavaScript二叉搜索树构建操作详解

    目录 前言 什么是二叉搜索树 构建一颗二叉搜索树 二叉搜索树的操作 向二叉搜索树中插入数据 查找二叉搜索树中的数据 删除二叉搜索树的某个节点 前驱后继节点 删除一个节点的三种情况 实现代码 完整代码 总结 前言 前面我们介绍了二叉树这个数据结构以及二叉树的遍历算法,这篇文章我们来学习一下一个特殊的二叉树——二叉搜索树(BST Binary Search Tree),也叫二叉排序树.二叉查找树. 什么是二叉搜索树 二叉搜索树首先它是一棵二叉树,而且还满足下面这些特质: 对于任何一个非空节点来说,它

  • C++简单实现与分析二叉搜索树流程

    目录 二叉搜索树 二叉搜索树的重要操作 二叉搜索树实现(key模型) 二叉搜索树的应用 二叉搜索树的实现(key/value模型) 二叉搜索树 二叉搜索树又被称为二叉排序树.它可以是一个空树,如果不是空树则满足下列性质: 1.如果它的左子树不为空,那么左子树上的所有节点都小于根. 2.如果它的右子树不为空,那么右子树上的所有节点都大于根 3.它的左子树.右子树也是二叉搜索树. 二叉搜索树的重要操作 二叉搜索树的插入 1.如果树为空,则直接插入 2.如果树不为空,则找到对应的位置插入. 查找办法:

  • C++实现LeetCode(99.复原二叉搜索树)

    [LeetCode] 99. Recover Binary Search Tree 复原二叉搜索树 Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing its structure. Example 1: Input: [1,3,null,null,2]    1 / 3 \ 2 Output: [3,1,null,null,2]    3 / 1

  • C++实现LeetCode(98.验证二叉搜索树)

    [LeetCode] 98. Validate Binary Search Tree 验证二叉搜索树 Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The ri

随机推荐