Pytorch 之修改Tensor部分值方式

一:背景引入

对于一张图片,怎样修改局部像素值?

二:利用Tensor方法

比如输入全零tensor,可认为为黑色图片

>>> n=torch.FloatTensor(3,3,4).fill_(0)
>>> n
    tensor([[[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]], 

         [[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]], 

         [[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]]])     

现在修改部分值:

>>> n[:,0:2,1:3]=1

结果为

>>> n
    tensor([[[0., 1., 1., 0.],
         [0., 1., 1., 0.],
         [0., 0., 0., 0.]], 

         [[0., 1., 1., 0.],
         [0., 1., 1., 0.],
         [0., 0., 0., 0.]], 

         [[0., 1., 1., 0.],
         [0., 1., 1., 0.],
         [0., 0., 0., 0.]]]) 

可以看到利用切片的思想可以修改tensor中的部分值。这样修改后,黑色图片上就会有白色的小洞洞,因为在tensor中,1代表是白色,RGB中的255。

以上这篇Pytorch 之修改Tensor部分值方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch中tensor的合并与截取方法

    合并: torch.cat(inputs=(a, b), dimension=1) e.g. x = torch.cat((x,y), 0) 沿x轴合并 截取: x[:, 2:4] 以上这篇pytorch中tensor的合并与截取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • PyTorch中Tensor的维度变换实现

    对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看. 维度查看:torch.Tensor.size() 查看当前 tensor 的维度 举个例子: >>> import torch >>> a = torch.Tensor([[[1, 2], [3, 4], [5, 6]]]) >>> a.size() torch.Size

  • pytorch 实现tensor与numpy数组转换

    看代码,tensor转numpy: a = torch.ones(2,2) b = a.numpy() c=np.array(a) #也可以转numpy数组 print(type(a)) print(type(b)) print(a) print(b) 输出为: <class 'torch.Tensor'> <class 'numpy.ndarray'> tensor([[1., 1.], [1., 1.]]) [[1. 1.] [1. 1.]] numpy转tensor: imp

  • 详解PyTorch中Tensor的高阶操作

    条件选取:torch.where(condition, x, y) → Tensor 返回从 x 或 y 中选择元素的张量,取决于 condition 操作定义: 举个例子: >>> import torch >>> c = randn(2, 3) >>> c tensor([[ 0.0309, -1.5993, 0.1986], [-0.0699, -2.7813, -1.1828]]) >>> a = torch.ones(2,

  • Pytorch中的variable, tensor与numpy相互转化的方法

    在使用pytorch作为深度学习的框架时,经常会遇到变量variable.张量tensor与矩阵numpy的类型的相互转化的问题,本章结合这实际图像对此转化方法进行实现. 1.加载需要用到的模块 import torch from torch.autograd import Variable import matplotlib.pyplot as plt import matplotlib.image as mpimg 2.显示图片与图片中的一部分区域 test_img = mpimg.imre

  • Pytorch 之修改Tensor部分值方式

    一:背景引入 对于一张图片,怎样修改局部像素值? 二:利用Tensor方法 比如输入全零tensor,可认为为黑色图片 >>> n=torch.FloatTensor(3,3,4).fill_(0) >>> n tensor([[[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]], [[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]], [[0., 0., 0

  • pytorch教程之Tensor的值及操作使用学习

    目录 1.Tensors 建立5*3的矩阵,未初始化 建立随机初始化矩阵 建立零初始化矩阵,数据类型是Long 建立一个tensor数据来源于data 获取tensor的size 2.对Tensor的操作 实现加法的四种方式 所有原地替换 使用标准的numpy操作 使用torch.view 改变tensor的形状 tensor转化为numpy的数字,使用item Torch Tensor 和numpy的相互转换 将numpy array转化为pytorch Tensor CUDA Tensors

  • pytorch 实现cross entropy损失函数计算方式

    均方损失函数: 这里 loss, x, y 的维度是一样的,可以是向量或者矩阵,i 是下标. 很多的 loss 函数都有 size_average 和 reduce 两个布尔类型的参数.因为一般损失函数都是直接计算 batch 的数据,因此返回的 loss 结果都是维度为 (batch_size, ) 的向量. (1)如果 reduce = False,那么 size_average 参数失效,直接返回向量形式的 loss (2)如果 reduce = True,那么 loss 返回的是标量 a

  • pytorch查看torch.Tensor和model是否在CUDA上的实例

    今天训练faster R-CNN时,发现之前跑的很好的程序(是指在运行程序过程中,显卡利用率能够一直维持在70%以上),今天看的时候,显卡利用率很低,所以在想是不是我的训练数据torch.Tensor或者模型model没有加载到GPU上训练,于是查找如何查看tensor和model所在设备的命令. import torch import torchvision.models as models model=models.vgg11(pretrained=False) print(next(mod

  • pytorch GAN伪造手写体mnist数据集方式

    一,mnist数据集 形如上图的数字手写体就是mnist数据集. 二,GAN原理(生成对抗网络) GAN网络一共由两部分组成:一个是伪造器(Generator,简称G),一个是判别器(Discrimniator,简称D) 一开始,G由服从某几个分布(如高斯分布)的噪音组成,生成的图片不断送给D判断是否正确,直到G生成的图片连D都判断以为是真的.D每一轮除了看过G生成的假图片以外,还要见数据集中的真图片,以前者和后者得到的损失函数值为依据更新D网络中的权值.因此G和D都在不停地更新权值.以下图为例

  • 使用pytorch完成kaggle猫狗图像识别方式

    kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用. 碰巧最近入门了一门非常的深度学习框架:pytorch,所以今天我和大家一起用pytorch实现一个图像识别领域的入门项目:猫狗图像识别. 深度学习的基础就是数据,咱们先从数据谈起.此次使用的猫狗分类图像一共25000张,猫狗分别有12500张,我们先来简单的瞅瞅都是一些什么图片. 我们从下载文件里可以看到有两个文件夹:train和t

  • pytorch常见的Tensor类型详解

    Tensor有不同的数据类型,每种类型分别有对应CPU和GPU版本(HalfTensor除外).默认的Tensor是FloatTensor,可通过torch.set_default_tensor_type修改默认tensor类型(如果默认类型为GPU tensor,则所有操作都将在GPU上进行). Tensor的类型对分析内存占用很有帮助,例如,一个size为(1000,1000,1000)的FloatTensor,它有1000*1000*1000=10^9个元素,每一个元素占用32bit/8=

  • PyTorch中torch.tensor与torch.Tensor的区别详解

    PyTorch最近几年可谓大火.相比于TensorFlow,PyTorch对于Python初学者更为友好,更易上手. 众所周知,numpy作为Python中数据分析的专业第三方库,比Python自带的Math库速度更快.同样的,在PyTorch中,有一个类似于numpy的库,称为Tensor.Tensor自称为神经网络界的numpy. 一.numpy和Tensor二者对比 对比项 numpy Tensor 相同点 可以定义多维数组,进行切片.改变维度.数学运算等 可以定义多维数组,进行切片.改变

  • pytorch查看模型weight与grad方式

    在用pdb debug的时候,有时候需要看一下特定layer的权重以及相应的梯度信息,如何查看呢? 1. 首先把你的模型打印出来,像这样 2. 然后观察到model下面有module的key,module下面有features的key, features下面有(0)的key,这样就可以直接打印出weight了,在pdb debug界面输入p model.module.features[0].weight,就可以看到weight,输入 p model.module.features[0].weig

  • 详解Pytorch中的tensor数据结构

    目录 torch.Tensor Tensor 数据类型 view 和 reshape 的区别 Tensor 与 ndarray 创建 Tensor 传入维度的方法 torch.Tensor torch.Tensor 是一种包含单一数据类型元素的多维矩阵,类似于 numpy 的 array.Tensor 可以使用 torch.tensor() 转换 Python 的 list 或序列数据生成,生成的是dtype 默认是 torch.FloatTensor. 注意 torch.tensor() 总是

随机推荐