python使用协程实现并发操作的方法详解

本文实例讲述了python使用协程实现并发操作的方法。分享给大家供大家参考,具体如下:

协程

协程是一种用户态的轻量级线程,又称微线程。

协程拥有自己的寄存器上下文和栈,调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。

优点:

  1. 无需线程上下文切换的开销
  2. 无需原子操作锁定及同步的开销
  3. 方便切换控制流,简化编程模型
  4. 高并发+高扩展性+低成本:一个CPU支持上万的协程都不是问题。所以很适合用于高并发处理。

所谓原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。

原子操作可以是一个步骤,也可以是多个操作步骤,但是其顺序是不可以被打乱,或者切割掉只执行部分。视作整体是原子性的核心。

缺点:

  1. 无法利用多核资源:协程的本质是个单线程,它不能同时将 单个CPU 的多个核用上,协程需要和进程配合才能运行在多CPU上.当然我们日常所编写的绝大部分应用都没有这个必要,除非是cpu密集型应用。
  2. 进行阻塞(Blocking)操作(如IO时)会阻塞掉整个程序

使用Gevent

gevent是python的一个并发框架,以微线程greenlet为核心,使用了epoll事件监听机制以及诸多其他优化而变得高效.

  • 简单示例

gevent的sleep可以交出控制权,当我们在受限于网络或IO的函数中使用gevent,这些函数会被协作式的调度, gevent的真正能力会得到发挥。Gevent处理了所有的细节, 来保证你的网络库会在可能的时候,隐式交出greenlet上下文的执行权。

import gevent
def foo():
  print('running in foo')
  gevent.sleep(0)
  print('com back from bar in to foo')
def bar():
  print('running in bar')
  gevent.sleep(0)
  print('com back from foo in to bar')
# 创建线程并行执行程序
gevent.joinall([
  gevent.spawn(foo),
  gevent.spawn(bar),
])

执行结果

running in foo
running in bar
com back from bar in to foo
com back from foo in to bar

  • 同步异步
import random
import gevent
def task(pid):
  gevent.sleep(random.randint(0, 2) * 0.001)
  print('Task %s done' % pid)
def synchronous():
  for i in range(1, 10):
    task(i)
def asynchronous():
  threads = [gevent.spawn(task, i) for i in range(10)]
  gevent.joinall(threads)
print('Synchronous:')
synchronous()
print('Asynchronous:')
asynchronous()

执行输出

Synchronous:
Task 1 done
Task 2 done
Task 3 done
Task 4 done
Task 5 done
Task 6 done
Task 7 done
Task 8 done
Task 9 done
Asynchronous:
Task 1 done
Task 4 done
Task 5 done
Task 9 done
Task 6 done
Task 0 done
Task 2 done
Task 3 done
Task 7 done
Task 8 done

  • 以子类的方法使用协程

可以子类化Greenlet类,重载它的_run方法,类似多线程和多进程模块

import gevent
from gevent import Greenlet
class Test(Greenlet):
  def __init__(self, message, n):
    Greenlet.__init__(self)
    self.message = message
    self.n = n
  def _run(self):
    print(self.message, 'start')
    gevent.sleep(self.n)
    print(self.message, 'end')
tests = [
  Test("hello", 3),
  Test("world", 2),
]
for test in tests:
  test.start() # 启动
for test in tests:
  test.join() # 等待执行结束
  • 使用monkey patch修改系统标准库(自动切换协程)

当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。

由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。

由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成

import gevent
import requests
from gevent import monkey
monkey.patch_socket()
def task(url):
  r = requests.get(url)
  print('%s bytes received from %s' % (len(r.text), url))
gevent.joinall([
  gevent.spawn(task, 'https://www.baidu.com/'),
  gevent.spawn(task, 'https://www.qq.com/'),
  gevent.spawn(task, 'https://www.jd.com/'),
])

执行输出

2443 bytes received from https://www.baidu.com/
108315 bytes received from https://www.jd.com/
231873 bytes received from https://www.qq.com/

可以看出3个网络操作是并发执行的,而且结束顺序不同

参考链接:http://hhkbp2.github.io/gevent-tutorial/

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python实现多线程的方式及多条命令并发执行

    一.概念介绍 Thread 是threading模块中最重要的类之一,可以使用它来创建线程.有两种方式来创建线程:一种是通过继承Thread类,重写它的run方法:另一种是创建一个threading.Thread对象,在它的初始化函数(__init__)中将可调用对象作为参数传入. Thread模块是比较底层的模块,Threading模块是对Thread做了一些包装的,可以更加方便的被使用. 另外在工作时,有时需要让多条命令并发的执行, 而不是顺序执行. 二.代码样例 #!/usr/bin/py

  • python线程、进程和协程详解

    引言 解释器环境:python3.5.1 我们都知道python网络编程的两大必学模块socket和socketserver,其中的socketserver是一个支持IO多路复用和多线程.多进程的模块.一般我们在socketserver服务端代码中都会写这么一句: server = socketserver.ThreadingTCPServer(settings.IP_PORT, MyServer) ThreadingTCPServer这个类是一个支持多线程和TCP协议的socketserver

  • Python并发编程协程(Coroutine)之Gevent详解

    Gevent官网文档地址:http://www.gevent.org/contents.html 基本概念 我们通常所说的协程Coroutine其实是corporateroutine的缩写,直接翻译为协同的例程,一般我们都简称为协程. 在linux系统中,线程就是轻量级的进程,而我们通常也把协程称为轻量级的线程即微线程. 进程和协程 下面对比一下进程和协程的相同点和不同点: 相同点: 我们都可以把他们看做是一种执行流,执行流可以挂起,并且后面可以在你挂起的地方恢复执行,这实际上都可以看做是con

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • python thread 并发且顺序运行示例

    复制代码 代码如下: #-*- coding:utf-8 -*- import threading import time def fun(name, ls_name, front_thread = None): ''''' 线程启动函数 通过front_thread来使用线程有序的运行 ''' time.clock() time.sleep(2) # 如果front_thread存在,则在front_thread运行完成后,才运行当前线程 if front_thread != None: fr

  • python中的协程深入理解

    先介绍下什么是协程: 协程,又称微线程,纤程,英文名Coroutine.协程的作用,是在执行函数A时,可以随时中断,去执行函数B,然后中断继续执行函数A(可以自由切换).但这一过程并不是函数调用(没有调用语句),这一整个过程看似像多线程,然而协程只有一个线程执行. 是不是有点没看懂,没事,我们下面会解释.要理解协程是什么,首先需要理解yield,这里简单介绍下,yield可以理解为生成器,yield item这行代码会产出一个值,提供给next(...)的调用方; 此外,还会作出让步,暂停执行生

  • 简述Python中的进程、线程、协程

    进程.线程和协程之间的关系和区别也困扰我一阵子了,最近有一些心得,写一下. 进程拥有自己独立的堆和栈,既不共享堆,亦不共享栈,进程由操作系统调度. 线程拥有自己独立的栈和共享的堆,共享堆,不共享栈,线程亦由操作系统调度(标准线程是的). 协程和线程一样共享堆,不共享栈,协程由程序员在协程的代码里显示调度. 进程和其他两个的区别还是很明显的. 协程和线程的区别是:协程避免了无意义的调度,由此可以提高性能,但也因此,程序员必须自己承担调度的责任,同时,协程也失去了标准线程使用多CPU的能力. Pyt

  • 深入浅析python中的多进程、多线程、协程

    进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配.任务的调度. 程序是运行在系统上的具有某种功能的软件,比如说浏览器,音乐播放器等. 每次执行程序的时候,都会完成一定的功能,比如说浏览器帮我们打开网页,为了保证其独立性,就需要一个专门的管理和控制执行程序的数据结构--进程控制块. 进程就是一个程序在一个数据集上的一次动态执行过程. 进程一般由程序.数据集.进程控

  • python编程使用协程并发的优缺点

    协程 协程是一种用户态的轻量级线程,又称微线程. 协程拥有自己的寄存器上下文和栈,调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈.因此:协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置. 优点: 1.无需线程上下文切换的开销 2.无需原子操作锁定及同步的开销 3.方便切换控制流,简化编程模型 4.高并发+高扩展性+低成本:一个CPU支持上万的协程都不

  • 简单介绍Python的Tornado框架中的协程异步实现原理

    Tornado 4.0 已经发布了很长一段时间了, 新版本广泛的应用了协程(Future)特性. 我们目前已经将 Tornado 升级到最新版本, 而且也大量的使用协程特性. 很长时间没有更新博客, 今天就简单介绍下 Tornado 协程实现原理, Tornado 的协程是基于 Python 的生成器实现的, 所以首先来回顾下生成器. 生成器 Python 的生成器可以保存执行状态 并在下次调用的时候恢复, 通过在函数体内使用 yield 关键字 来创建一个生成器, 通过内置函数 next 或生

  • python并发编程之多进程、多线程、异步和协程详解

    最近学习python并发,于是对多进程.多线程.异步和协程做了个总结. 一.多线程 多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行.即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果. 多线程相当于一个并发(concunrrency)系统.并发系统一般同时执行多个任务.如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完

随机推荐