python实现小世界网络生成

没有使用igraph库哦 因为我还没学

小世界网络简介:

1998年, Watts和Strogatz 提出了小世界网络这一概念,并建立了WS模型。实证结果表明,大多数的真实网络都具有小世界特性(较小的最短路径)和聚类特性(较大的聚类系数)。传统的规则最近邻耦合网络具有高聚类的特性,但并不具有小世界特性;而随机网络具有小世界特性但却没有高聚类特性。因此这两种传统的网络模型都不能很好的来表示实际的真实网络。Watts和Strogatz建立的小世界网络模型就介于这两种网络之间,同时具有小世界特性和聚类特性,可以很好的来表示真实网络。

小世界模型构造算法

1、从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的各K/2节点相连,K是偶数。

2、随机化重连:以概率p随机地从新连接网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。其中规定,任意两个不同的节点之间至多只能有一条边,并且每一个节点都不能有边与自身相连。

在上述模型中,p=0对应于完全规则网络,p=1则对应于完全随机网络,通过调节p的值就可以控制从完全规则网络到完全随机网络的过渡。

效果如下:

代码如下:

import matplotlib.pyplot as plt
import random as rd
import numpy as np
plt.rcParams['font.sans-serif'] = ['SimHei'] # 中文字体设置
plt.rcParams['axes.unicode_minus']=False
#小世界项目
def dian(N,K,P):
  global ls
  tim=[]
  for i in range(N):
    for j in range(1,K+1):
      ls[i]=ls.get(i,set())
      ls[i].add((i+j)%N)
      ls[i].add((i-j)%N)
      ls[(i-j)%N]=ls.get((i-j)%N,set())
      ls[(i-j)%N].add(i)
      ls[(i+j)%N]=ls.get((i+j)%N,set())
      ls[(i+j)%N].add(i)
  for i in range(N):
    for j in list(ls[i]):
      if rd.random()<=P:
        aa=ls[i].pop()
        a=set(range(N))
        a.discard(i)
        a=a^ls[i]
        for i in range(rd.randint(1,len(a)-1)):
          aa=a.pop()
        ls[aa].discard(i)
        b=a.pop()
        ls[i].add(b)
        ls[b].add(i)
  for i in range(N):
    tim.append(len(ls[i])*40-N)
  new=[]
  for i in range(len(ls)):
    l=[]
    l.append(i)
    l+=list(ls[i])
    new.append(l)
  return new,tim
def hua(L,S):
  x=np.linspace(0,100,len(L))
  y=np.sqrt(np.abs(10000-(x-50)**2))
  plt.scatter(x,y,s=S,edgecolor='k',alpha=0.7)
  for i in range(len(L)):
    plt.text(x[i]-0.13,y[i]-0.015,str(S[i]//40+1))
    for j in L[i]:
      plt.plot(list((x[i],x[j])),list((y[i],y[j]))\
           ,color='gray',linewidth=1,alpha=0.7)
  plt.title('小世界网络初步')
  plt.xticks([])
  plt.yticks([])
  plt.axis('off')
  plt.savefig('niu.png')
ls={}
l,k=dian(20,3,0.5) #不要超过40哦~
hua(l,k)

以上这篇python实现小世界网络生成就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python networkx 包绘制复杂网络关系图的实现

    1. 创建一个图 import networkx as nx g = nx.Graph() g.clear() #将图上元素清空 所有的构建复杂网络图的操作基本都围绕这个g来执行. 2. 节点 节点的名字可以是任意数据类型的,添加一个节点是 g.add_node(1) g.add_node("a") g.add_node("spam") 添加一组节点,就是提前构建好了一个节点列表,将其一次性加进来,这跟后边加边的操作是具有一致性的. g.add_nodes_from

  • python绘制随机网络图形示例

    如下所示: #Copyright (c)2017, 东北大学软件学院学生 # All rightsreserved #文件名称:a.py # 作 者:孔云 #问题描述: #问题分析:.代码如下: import networkx as ne #导入建网络模型包,命名ne import matplotlib.pyplot as mp #导入科学绘图包,命名mp #erdos renyi graphy rg=ne.erdos_renyi_graph(20,0.8) ps=ne.shell_layout

  • python实现小世界网络生成

    没有使用igraph库哦 因为我还没学 小世界网络简介: 1998年, Watts和Strogatz 提出了小世界网络这一概念,并建立了WS模型.实证结果表明,大多数的真实网络都具有小世界特性(较小的最短路径)和聚类特性(较大的聚类系数).传统的规则最近邻耦合网络具有高聚类的特性,但并不具有小世界特性:而随机网络具有小世界特性但却没有高聚类特性.因此这两种传统的网络模型都不能很好的来表示实际的真实网络.Watts和Strogatz建立的小世界网络模型就介于这两种网络之间,同时具有小世界特性和聚类

  • 利用Python实现在同一网络中的本地文件共享方法

    本文利用Python3启动简单的HTTP服务器,以实现在同一网络中共享本地文件. 启动HTTP服务器 打开终端,转入目标文件所在文件夹,键入以下命令: $ cd /Users/zero/Documents/localFiles # python -m http.server <port number> $ sudo python3 -m http.server 8092 Serving HTTP on 0.0.0.0 port 8092 (http://0.0.0.0:8092/) ... 生

  • python利用faker库批量生成测试数据

    安装 pip install faker 使用 简单使用 本库可生成姓名.地址.电话.邮箱.公司等等一系列数据.首先导入库,实例化: from faker import Faker fake = Faker() 先看看正面生成一个人的姓名地址吧: for _ in range(10): print(fake.name()) rs. Elizabeth Carter MD Mark Obrien Madeline Oliver Ruth Newman Lori Bennett Victor Nol

  • Python实战小项目之Mnist手写数字识别

    目录 程序流程分析图: 传播过程: 代码展示: 创建环境 准备数据集 下载数据集 下载测试集 绘制图像 搭建神经网络 训练模型 测试模型 保存训练模型 运行结果展示: 程序流程分析图: 传播过程: 代码展示: 创建环境 使用<pip install+包名>来下载torch,torchvision包 准备数据集 设置一次训练所选取的样本数Batch_Sized的值为512,训练此时Epochs的值为8 BATCH_SIZE = 512 EPOCHS = 8 device = torch.devi

  • Python操作JSON实现网络数据交换

    目录 前言 JSON是什么? JSON与XML的优劣差异? 将Python对象编码成JSON字符串 将JSON字符串解码为Python对象 解决中文乱码问题 前言 学学Python中操纵JSON的知识.学完本文,你可以学到如下内容: 1.JSON是什么? 2.JSON与XML的优劣差异? 3.将Python对象编码成JSON字符串 4.将JSON字符串解码为Python对象 5.解决JSON中文乱码问题 JSON是什么? JSON的全称是 JavaScript Object Notation,是

  • 教你用Python脚本快速为iOS10生成图标和截屏

    简介 这两天更新完Xcode8之后发现Xcode对图标的要求又有了变化,之前用的一个小应用"IconKit"还没赶上节奏,已经不能满足Xcode8的要求了. 于是就想起来用Python自己做个脚本来生成图标. 其实这个脚本很早就写了,现在为了适应iOS10,就修改完善下,并且放到了 GitHub . 可以看看效果图: 代码: #encoding=utf-8 #by 不灭的小灯灯 #create date 2016/5/22 #update 2016/9/21 #support iOS

  • Python实战小程序利用matplotlib模块画图代码分享

    Python中的数据可视化 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件. 实战小程序:画出y=x^3的散点图 样例代码如下: #coding=utf-8 import pylab as y #引入pylab模块 x = y.np.linspace(-10, 10, 100) #设置x横坐标范围和点数 y.plot(x, x*x*x,'or') #生成图像 ax = y.gca() a

  • Python内置random模块生成随机数的方法

    本文我们详细地介绍下两个模块关于生成随机序列的其他使用方法. 随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等.Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入random模块. import random 下面介绍下Python内置的random模块的几种生成随机数的方法. 1.random.random()随机生成 0 到 1 之间的浮点数[0.0, 1.0).注意的是返回的随机数可能会是 0 但

  • python 含子图的gif生成时内存溢出的方法

    今天想用python做个demo,含两个子图的动态gif,代码如下: import matplotlib.pyplot as plt import imageio,os import matplotlib # plt.ion() fig=plt.figure(0) ax1=plt.subplot(121) ax2=plt.subplot(122) ax1.set_title('input') ax2.set_title('GT') for i in range(1000): img1=plt.i

  • Python之虚拟环境virtualenv,pipreqs生成项目依赖第三方包的方法

    virtualenv简介 含义: virtual:虚拟,env:environment环境的简写,所以virtualenv就是虚拟环境,顾名思义,就是虚拟出来的一个新环境,比如我们使用的虚拟机.docker,它们都是把一部分的内容独立出来,这部分独立的内容相当于一个容器,在这个容器只呢个,我们可以"为所欲为"----安装需要的依赖包,软件..,同时这个容器是与外界相互独立的,容器与容器直接也是互相独立不影响. 为何要用虚拟环境: [前提概要] Django也是一个非常流行的web框架.

随机推荐