OpenCV绘制圆端矩形的示例代码

目录
  • 功能函数
  • 测试代码
  • 测试效果

本文主要介绍了OpenCV绘制圆端矩形的示例代码,分享给大家,具体如下:

功能函数

// 绘制圆端矩形(药丸状,pill)
void DrawPill(cv::Mat mask, const cv::RotatedRect &rotatedrect, const cv::Scalar &color, int thickness, int lineType)
{
	cv::Mat canvas = cv::Mat::zeros(mask.size(), CV_8UC1);
	// 确定短边,短边绘制圆形
	cv::RotatedRect rect = rotatedrect;
	float r = rect.size.height / 2.0f;
	if (rect.size.width > rect.size.height) {
		rect.size.width -= rect.size.height;
	}
	else {
		rect.size.height -= rect.size.width;
		r = rect.size.width / 2.0f;
	}
	cv::Point2f ps[4];
	rect.points(ps);

	// 绘制边缘
	std::vector<std::vector<cv::Point>> tmpContours;
	std::vector<cv::Point> contours;
	for (int i = 0; i != 4; ++i) {
		contours.emplace_back(cv::Point2i(ps[i]));
	}
	tmpContours.insert(tmpContours.end(), contours);
	drawContours(canvas, tmpContours, 0, cv::Scalar(255),5, lineType);  // 填充mask

	// 计算常长短轴
	float a = rotatedrect.size.width;
	float b = rotatedrect.size.height;

	int point01_x = (int)((ps[0].x + ps[1].x) / 2.0f);
	int point01_y = (int)((ps[0].y + ps[1].y) / 2.0f);
	int point03_x = (int)((ps[0].x + ps[3].x) / 2.0f);
	int point03_y = (int)((ps[0].y + ps[3].y) / 2.0f);
	int point12_x = (int)((ps[1].x + ps[2].x) / 2.0f);
	int point12_y = (int)((ps[1].y + ps[2].y) / 2.0f);
	int point23_x = (int)((ps[2].x + ps[3].x) / 2.0f);
	int point23_y = (int)((ps[2].y + ps[3].y) / 2.0f);

	cv::Point c0 = a < b ? cv::Point(point12_x, point12_y) : cv::Point(point23_x, point23_y);
	cv::Point c1 = a < b ? cv::Point(point03_x, point03_y) : cv::Point(point01_x, point01_y);

	// 长轴两端以填充的方式画圆,直径等于短轴
	cv::circle(canvas, c0, (int)r, cv::Scalar(255), 5, lineType);
	cv::circle(canvas, c1, (int)r, cv::Scalar(255), 5, lineType);

	// 绘制外围轮廓,如果不这样操作,会得到一个矩形加两个圆形,丑。。。
	std::vector<std::vector<cv::Point>> EXcontours;
	cv::findContours(canvas,EXcontours,cv::RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
	drawContours(mask, EXcontours, 0, color, thickness,lineType);  // 填充mask
}

测试代码

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

void DrawPill(cv::Mat mask, const cv::RotatedRect &rotatedrect, const cv::Scalar &color, int thickness, int lineType);

int main()
{
	cv::Mat src = imread("test.jpg");
	cv::Mat result = src.clone();
	cv::RotatedRect rorect(cv::Point(src.cols / 2, src.rows / 2), cv::Size(1000, 800), 50);
	DrawPill(result, rorect, cv::Scalar(0, 255, 255),8,16);
	imshow("original", src);
	imshow("result", result);
	waitKey(0);
	return 0;
}

// 绘制圆端矩形(药丸状,pill)
void DrawPill(cv::Mat mask, const cv::RotatedRect &rotatedrect, const cv::Scalar &color, int thickness, int lineType)
{
	cv::Mat canvas = cv::Mat::zeros(mask.size(), CV_8UC1);
	// 确定短边,短边绘制圆形
	cv::RotatedRect rect = rotatedrect;
	float r = rect.size.height / 2.0f;
	if (rect.size.width > rect.size.height) {
		rect.size.width -= rect.size.height;
	}
	else {
		rect.size.height -= rect.size.width;
		r = rect.size.width / 2.0f;
	}
	cv::Point2f ps[4];
	rect.points(ps);

	// 绘制边缘
	std::vector<std::vector<cv::Point>> tmpContours;
	std::vector<cv::Point> contours;
	for (int i = 0; i != 4; ++i) {
		contours.emplace_back(cv::Point2i(ps[i]));
	}
	tmpContours.insert(tmpContours.end(), contours);
	drawContours(canvas, tmpContours, 0, cv::Scalar(255),5, lineType);  // 填充mask

	// 计算常长短轴
	float a = rotatedrect.size.width;
	float b = rotatedrect.size.height;

	int point01_x = (int)((ps[0].x + ps[1].x) / 2.0f);
	int point01_y = (int)((ps[0].y + ps[1].y) / 2.0f);
	int point03_x = (int)((ps[0].x + ps[3].x) / 2.0f);
	int point03_y = (int)((ps[0].y + ps[3].y) / 2.0f);
	int point12_x = (int)((ps[1].x + ps[2].x) / 2.0f);
	int point12_y = (int)((ps[1].y + ps[2].y) / 2.0f);
	int point23_x = (int)((ps[2].x + ps[3].x) / 2.0f);
	int point23_y = (int)((ps[2].y + ps[3].y) / 2.0f);

	cv::Point c0 = a < b ? cv::Point(point12_x, point12_y) : cv::Point(point23_x, point23_y);
	cv::Point c1 = a < b ? cv::Point(point03_x, point03_y) : cv::Point(point01_x, point01_y);

	// 长轴两端以填充的方式画圆,直径等于短轴
	cv::circle(canvas, c0, (int)r, cv::Scalar(255), 5, lineType);
	cv::circle(canvas, c1, (int)r, cv::Scalar(255), 5, lineType);

	// 绘制外围轮廓,如果不这样操作,会得到一个矩形加两个圆形,丑。。。
	std::vector<std::vector<cv::Point>> EXcontours;
	cv::findContours(canvas,EXcontours,cv::RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
	drawContours(mask, EXcontours, 0, color, thickness,lineType);  // 填充mask
}

测试效果

图1 原图

图2 绘制圆端矩形

绘制圆端矩形其实就是绘制了一个旋转矩形,然后分析哪个轴更长,就在哪个轴上的两端画圆,再取外围轮廓,大功告成,通俗来讲就画了一个矩形两个圆,如图3所示。

图3 绘制逻辑

不过注意,这个图形最好不要超过图像边界,因为超过后再分析外围轮廓,它认为的外围就到了内部,如图4所示。

图4 外围线

然后,你就会得到一个奇葩图形,如图5所示。

图5 示意图

到此这篇关于OpenCV绘制圆端矩形的示例代码的文章就介绍到这了,更多相关OpenCV 圆端矩形内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python3+openCV 获取图片中文本区域的最小外接矩形实例

    我就废话不多说了,大家还是直接看代码吧! print("thresh =",thresh) coords = np.column_stack(np.where(thresh > 0))//获取thresh二值灰度图片中的白色文字区域的点 print("coords =",coords) min_rect = cv2.minAreaRect(coords)//由点集获取最小矩形(包含中心坐标点.宽和高.偏转角度) print("min_rec =&qu

  • opencv提取外部轮廓并在外部加矩形框

    这段时间一直在用opencv搞图像处理的问题,发现虽然可调用的函数多,但是直接找相应代码还是很困难,就行寻找连通域,并在连通域外侧加框,对于习惯使用Mat矩形操作的我,真心感觉代码少之又少,为防止以后自己还会用到,特在此记录一下. 要对下面的图像进行字符的边缘检测. 程序中具体的步骤为: (1)灰度化.二值化 (2)图像膨胀 (3)检测膨胀图像的边缘并叫外矩形框 实现代码如下: #include "stdafx.h" #include "stdio.h" #incl

  • Opencv绘制最小外接矩形、最小外接圆

    Opencv中求点集的最小外结矩使用方法minAreaRect,求点集的最小外接圆使用方法minEnclosingCircle. minAreaRect方法原型: RotatedRect minAreaRect( InputArray points ); 输入参数points是所要求最小外结矩的点集数组或向量: minEnclosingCircle方法原型: void minEnclosingCircle( InputArray points, CV_OUT Point2f& center, C

  • openCV提取图像中的矩形区域

    改编自详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)原文是c++版,我改成了python版,供大家参考学习. 主要思想:边缘检测->轮廓检测->找出最大的面积的轮廓->找出顶点->投影变换 import numpy as np import cv2 # 这个成功的扣下了ppt白板 srcPic = cv2.imread('2345.jpg') length=srcPic.shape[0] depth=srcPic.shape[1] polyPic = srcPic shr

  • OpenCV 圆与矩形识别的方法

    最近一个项目用到了图像识别,之前从未接触过OpenCV,经过各种找教程,终于是搞懂了一些. 整个具体流程大概是获取图像-->图像二值化,灰度图(cvtColor)-->图像降噪(GaussianBlur)->轮廓识别(cvFindContours)-->形状判断. 大多数教程很专业,各种参数分析看不懂,经过各种搜索终于是搞懂了. 识别圆 在识别圆方面,OpenCV有内置的方法:霍夫圆变化: HoughCircles(edges, circles, CV_HOUGH_GRADIENT

  • python opencv实现图片旋转矩形分割

    有时候需要对有角度的矩形框内图像从原图片中分割出来.这里的程序思想是,先将图片进行矩形角度的旋转,使有角度的矩形处于水平状态后,根据原来坐标分割图片. 参考:python opencv实现旋转矩形框裁减功能 修改原来的程序: 1.旋转函数的输入仅为矩形的四点坐标 2.角度由公式计算出来 3.矩形四点pt1,pt2,pt3,pt4由txt文件读入 4.在旋转程序中还处理了顺时针和逆时针及出现矩形框翻转的问题. 代码: # -*- coding:utf-8 -*- import cv2 from m

  • python opencv minAreaRect 生成最小外接矩形的方法

    使用python opencv返回点集cnt的最小外接矩形,所用函数为 cv2.minAreaRect(cnt) ,cnt是点集数组或向量(里面存放的是点的坐标),并且这个点集不定个数. 举例说明:画一个任意四边形(任意多边形都可以)的最小外接矩形,那么点集 cnt 存放的就是该四边形的4个顶点坐标(点集里面有4个点) cnt = np.array([[x1,y1],[x2,y2],[x3,y3],[x4,y4]]) # 必须是array数组的形式 rect = cv2.minAreaRect(

  • 详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)

    前言 最近参加了大创项目,题目涉及到计算机视觉,学姐发了个修正图像的博客链接,于是打算用这个题目入门OpenCV. 分析问题 照片中的PPT区域总是沿着x,y,z三个轴都有倾斜(如下图),要想把照片翻转到平行位置,需要进行透视变换,而透视变换需要同一像素点变换前后的坐标.由此可以想到,提取矩形区域四个角的坐标作为变换前的坐标,变换后的坐标可以设为照片的四个角落,经过投影变换,矩形区域将会翻转并充满图像. 因此我们要解决的问题变为:提取矩形的四个角落.进行透视变换. 提取矩形角落坐标 矩形的检测主

  • python opencv实现旋转矩形框裁减功能

    本文实例为大家分享了python opencv实现旋转矩形框裁减的具体代码,供大家参考,具体内容如下 经常遇见旋转矩形框的裁减问题,那么思路是,将矩形框旋转正然后再裁减 # -*- coding:gb2312 -*- import cv2 from math import * import numpy as np import time def rotateImage(img,degree,pt1,pt2,pt3,pt4): height,width=img.shape[:2] heightNe

  • OpenCV绘制圆端矩形的示例代码

    目录 功能函数 测试代码 测试效果 本文主要介绍了OpenCV绘制圆端矩形的示例代码,分享给大家,具体如下: 功能函数 // 绘制圆端矩形(药丸状,pill) void DrawPill(cv::Mat mask, const cv::RotatedRect &rotatedrect, const cv::Scalar &color, int thickness, int lineType) { cv::Mat canvas = cv::Mat::zeros(mask.size(), CV

  • 使用c++实现OpenCV绘制圆端矩形

    功能函数 // 绘制圆端矩形(药丸状,pill) void DrawPill(cv::Mat mask, const cv::RotatedRect &rotatedrect, const cv::Scalar &color, int thickness, int lineType) { cv::Mat canvas = cv::Mat::zeros(mask.size(), CV_8UC1); // 确定短边,短边绘制圆形 cv::RotatedRect rect = rotatedre

  • Python+OpenCV实现分水岭分割算法的示例代码

    目录 前言 1.使用分水岭算法进行分割 2.Watershed与random walker分割对比 前言 分水岭算法是用于分割的经典算法,在提取图像中粘连或重叠的对象时特别有用,例如下图中的硬币. 使用传统的图像处理方法,如阈值和轮廓检测,我们将无法从图像中提取每一个硬币,但通过利用分水岭算法,我们能够检测和提取每一个硬币. 在使用分水岭算法时,我们必须从用户定义的标记开始.这些标记可以通过点击手动定义,或者我们可以使用阈值和/或形态学操作等方法自动或启发式定义它们. 基于这些标记,分水岭算法将

  • OpenCV 表盘指针自动读数的示例代码

    前段时间参加了一个表盘指针读数的比赛,今天来总结一下 数据集一共有一千张图片: 方法一:径向灰度求和 基本原理: 将图像以表盘圆心转换成极坐标,然后通过矩阵按行求和找到二值图最大值即为指针尖端 导入需要用到的包 import cv2 as cv import numpy as np import math from matplotlib import pyplot as plt import os 图像预处理 去除背景:利用提取红色实现 def extract_red(image): "&quo

  • 用opencv给图片换背景色的示例代码

    图像平滑 模糊/平滑图片来消除图片噪声 OpenCV函数:cv2.blur(), cv2.GaussianBlur(), cv2.medianBlur(), cv2.bilateralFilter() 2D 卷积 OpenCV中用cv2.filter2D()实现卷积操作,比如我们的核是下面这样(3×3区域像素的和除以10): img = cv2.imread('lena.jpg') # 定义卷积核 kernel = np.ones((3, 3), np.float32) / 10 # 卷积操作,

  • Python Opencv实现单目标检测的示例代码

    一 简介 目标检测即为在图像中找到自己感兴趣的部分,将其分割出来进行下一步操作,可避免背景的干扰.以下介绍几种基于opencv的单目标检测算法,算法总体思想先尽量将目标区域的像素值全置为1,背景区域全置为0,然后通过其它方法找到目标的外接矩形并分割,在此选择一张前景和背景相差较大的图片作为示例. 环境:python3.7 opencv4.4.0 二 背景前景分离 1 灰度+二值+形态学 轮廓特征和联通组件 根据图像前景和背景的差异进行二值化,例如有明显颜色差异的转换到HSV色彩空间进行分割. 1

  • 使用c++实现OpenCV绘制图形旋转矩形

    目录 功能函数 // 绘制旋转矩形 void DrawRotatedRect(cv::Mat mask,const cv::RotatedRect &rotatedrect,const cv::Scalar &color,int thickness, int lineType) { // 提取旋转矩形的四个角点 cv::Point2f ps[4]; rotatedrect.points(ps); // 构建轮廓线 std::vector<std::vector<cv::Poin

  • 通过Python绘制冰墩墩的示例代码

    目录 效果 基础绘制圆 基础彩色填充形状 冰墩墩代码 效果 基础绘制圆 基础知识: forward(x):将笔向前移动 x 个单位. right(x):将笔顺时针旋转角度 x. left(x):将笔逆时针旋转角度 x. penup():停止绘制海龟笔. pendown():开始绘制海龟笔. backward(x):将笔向后移动 x 单位. circle(radius):此函数以“海龟”位置为中心,绘制一个给定半径的圆. 画半径为50的圆: import turtle # 初始化 t = turt

  • ThinkPHP整合datatables实现服务端分页的示例代码

    最近做东西有一个需求,因为数据量很大,在这里我决定使用datatables的服务端分页,同时还需要传递查询条件到服务端.在网上搜索的大部分文章都感觉有些误差,于是自己封装了一下,主要配置/工具为: 服务端:php(使用thinkphp) 页面样式来自于H-ui框架(datatables版本为1.10.0) 主要修改(databases)配置项为: 1) bProcessing:true 使用ajax源 2) serverSide:true 使用服务端分页 3) createdRow:functi

  • python绘制BA无标度网络示例代码

    如下所示: #Copyright (c)2017, 东北大学软件学院学生 # All rightsreserved #文件名称:a.py # 作 者:孔云 #问题描述: #问题分析:.代码如下: import networkx as ne #导入建网络模型包,命名ne import matplotlib.pyplot as mp #导入科学绘图包,命名mp #BA scale-free degree network graphy BA=ne.barabasi_albert_graph(50,1)

随机推荐