运用示例详细总结Java多线程

目录
  • 进程与线程
  • Java中线程实现的方式
    • 实现 Runnable 接口
    • 继承 Thread 类
    • Thread 类和 Runnable 接口
  • 线程的状态变化
    • 取得和设置线程的名称
  • 线程的操作方法
    • 线程的强制运行
    • 线程的休眠
    • 中断线程
    • 后台线程
    • 线程的优先级
    • 线程的礼让
  • 同步以及死锁
    • 同步代码块
    • 同步方法

进程与线程

进程是程序的一次动态执行过程,它需要经历从代码加载,代码执行到执行完毕的一个完整的过程,这个过程也是进程本身从产生,发展到最终消亡的过程。多进程操作系统能同时达运行多个进程(程序),由于 CPU 具备分时机制,所以每个进程都能循环获得自己的CPU 时间片。由于 CPU 执行速度非常快,使得所有程序好像是在同时运行一样。

多线程是实现并发机制的一种有效手段。进程和线程一样,都是实现并发的一个基本单位。线程是比进程更小的执行单位,线程是进程的基础之上进行进一步的划分。所谓多线程是指一个进程在执行过程中可以产生多个更小的程序单元,这些更小的单元称为线程,这些线程可以同时存在,同时运行,一个进程可能包含多个同时执行的线程。进程与线程的区别如图所示:

Java中线程实现的方式

在 Java 中实现多线程有两种手段,一种是继承 Thread 类,另一种就是实现 Runnable 接口。下面我们就分别来介绍这两种方式的使用。

实现 Runnable 接口

package ljz;
class MyThread implements Runnable{ // 实现Runnable接口,作为线程的实现类
    private String name ;       // 表示线程的名称
    public MyThread(String name){
        this.name = name ;      // 通过构造方法配置name属性
    }
    public void run(){  // 覆写run()方法,作为线程 的操作主体
        for(int i=0;i<10;i++){
            System.out.println(name + "运行,i = " + i) ;
        }
    }
};
public class RunnableDemo01{
    public static void main(String args[]){
        MyThread mt1 = new MyThread("线程A ") ;    // 实例化对象
        MyThread mt2 = new MyThread("线程B ") ;    // 实例化对象
        Thread t1 = new Thread(mt1) ;       // 实例化Thread类对象
        Thread t2 = new Thread(mt2) ;       // 实例化Thread类对象
        t1.start() ;    // 启动多线程
        t2.start() ;    // 启动多线程
    }
};

程序运行结果:

继承 Thread 类

class MyThread extends Thread{  // 继承Thread类,作为线程的实现类
    private String name ;       // 表示线程的名称
    public MyThread(String name){
        this.name = name ;      // 通过构造方法配置name属性
    }
    public void run(){  // 覆写run()方法,作为线程 的操作主体
        for(int i=0;i<10;i++){
            System.out.println(name + "运行,i = " + i) ;
        }
    }
};
public class ThreadDemo02{
    public static void main(String args[]){
        MyThread mt1 = new MyThread("线程A ") ;    // 实例化对象
        MyThread mt2 = new MyThread("线程B ") ;    // 实例化对象
        mt1.start() ;   // 调用线程主体
        mt2.start() ;   // 调用线程主体
    }
};

程序运行结果:

从程序可以看出,现在的两个线程对象是交错运行的,哪个线程对象抢到了 CPU 资源,哪个线程就可以运行,所以程序每次的运行结果肯定是不一样的,在线程启动虽然调用的是 start() 方法,但实际上调用的却是 run() 方法定义的主体。

Thread 类和 Runnable 接口

通过 Thread 类和 Runable 接口都可以实现多线程,那么两者有哪些联系和区别呢?下面我们观察 Thread 类的定义。

public class Thread extends Object implements Runnable

从 Thread 类的定义可以清楚的发现,Thread 类也是 Runnable 接口的子类,但在Thread类中并没有完全实现 Runnable 接口中的 run() 方法,下面是 Thread 类的部分定义。

Private Runnable target;
public Thread(Runnable target,String name){
    init(null,target,name,0);
}
private void init(ThreadGroup g,Runnable target,String name,long stackSize){
    ...
    this.target=target;
}
public void run(){
    if(target!=null){
        target.run();
    }
}

从定义中可以发现,在 Thread 类中的 run() 方法调用的是 Runnable 接口中的 run() 方法,也就是说此方法是由 Runnable 子类完成的,所以如果要通过继承 Thread 类实现多线程,则必须覆写 run()。

实际上 Thread 类和 Runnable 接口之间在使用上也是有区别的,如果一个类继承 Thread类,则不适合于多个线程共享资源,而实现了 Runnable 接口,就可以方便的实现资源的共享。

线程的状态变化

要想实现多线程,必须在主线程中创建新的线程对象。任何线程一般具有5种状态,即创建,就绪,运行,阻塞,终止。下面分别介绍一下这几种状态:

  • 创建状态

在程序中用构造方法创建了一个线程对象后,新的线程对象便处于新建状态,此时它已经有了相应的内存空间和其他资源,但还处于不可运行状态。新建一个线程对象可采用Thread 类的构造方法来实现,例如 “Thread thread=new Thread()”。

  • 就绪状态

新建线程对象后,调用该线程的 start() 方法就可以启动线程。当线程启动时,线程进入就绪状态。此时,线程将进入线程队列排队,等待 CPU 服务,这表明它已经具备了运行条件。

  • 运行状态

当就绪状态被调用并获得处理器资源时,线程就进入了运行状态。此时,自动调用该线程对象的 run() 方法。run() 方法定义该线程的操作和功能。

  • 阻塞状态

一个正在执行的线程在某些特殊情况下,如被人为挂起或需要执行耗时的输入/输出操作,会让 CPU 暂时中止自己的执行,进入阻塞状态。在可执行状态下,如果调用sleep(),suspend(),wait() 等方法,线程都将进入阻塞状态,发生阻塞时线程不能进入排队队列,只有当引起阻塞的原因被消除后,线程才可以转入就绪状态。

  • 死亡状态

线程调用 stop() 方法时或 run() 方法执行结束后,即处于死亡状态。处于死亡状态的线程不具有继续运行的能力。

在此提出一个问题,Java 程序每次运行至少启动几个线程?

回答:至少启动两个线程,每当使用 Java 命令执行一个类时,实际上都会启动一个 JVM,每一个JVM实际上就是在操作系统中启动一个线程,Java 本身具备了垃圾的收集机制。所以在 Java 运行时至少会启动两个线程,一个是 main 线程,另外一个是垃圾收集线程。

取得和设置线程的名称

class MyThread implements Runnable{ //实现Runnable接口
    public void run(){
       for(int i=0;i<3;i++){
           System.Out.Println(Thread.currentThread().getName()+"运行, i="+i);  //取得当前线程的名称
       }
  }
};

public class ThreadDemo{
public static void main(String args[]){
    MyThread my=new MyThread();  //定义Runnable子类对象
    new Thread(my).start;    //系统自动设置线程名称
    new Thread(my,"线程A").start();  //手工设置线程名称
  }
};

程序运行结果:

线程的操作方法

刚才在分析自定义模式工作原理的时候其实就已经提到了,如果想要更改Glide的默认配

线程的强制运行

在线程操作中,可以使用 join() 方法让一个线程强制运行,线程强制运行期间,其他线程无法运行,必须等待此线程完成之后才可以继续执行。

class MyThread implements Runnable{ // 实现Runnable接口
    public void run(){  // 覆写run()方法
        for(int i=0;i<50;i++){
            System.out.println(Thread.currentThread().getName()
                    + "运行,i = " + i) ;  // 取得当前线程的名字
        }
    }
};
public class ThreadJoinDemo{
    public static void main(String args[]){
        MyThread mt = new MyThread() ;  // 实例化Runnable子类对象
        Thread t = new Thread(mt,"线程");     // 实例化Thread对象
        t.start() ; // 启动线程
        for(int i=0;i<50;i++){
            if(i>10){
                try{
                    t.join() ;  // 线程强制运行
                }catch(InterruptedException e){
                }
            }
            System.out.println("Main线程运行 --> " + i) ;
        }
    }
};

程序运行结果:

线程的休眠

在程序中允许一个线程进行暂时的休眠,直接使用 Thread.sleep() 即可实现休眠。

class MyThread implements Runnable{ // 实现Runnable接口
    public void run(){  // 覆写run()方法
        for(int i=0;i<50;i++){
            try{
                Thread.sleep(500) ; // 线程休眠
            }catch(InterruptedException e){
            }
            System.out.println(Thread.currentThread().getName()
                    + "运行,i = " + i) ;  // 取得当前线程的名字
        }
    }
};
public class ThreadSleepDemo{
    public static void main(String args[]){
        MyThread mt = new MyThread() ;  // 实例化Runnable子类对象
        Thread t = new Thread(mt,"线程");     // 实例化Thread对象
        t.start() ; // 启动线程
    }
};

程序执行结果:

中断线程

当一个线程运行时,另外一个线程可以直接通过interrupt()方法中断其运行状态。

class MyThread implements Runnable{ // 实现Runnable接口
    public void run(){  // 覆写run()方法
        System.out.println("1、进入run()方法") ;
        try{
            Thread.sleep(10000) ;   // 线程休眠10秒
            System.out.println("2、已经完成了休眠") ;
        }catch(InterruptedException e){
            System.out.println("3、休眠被终止") ;
            return ; // 返回调用处
        }
        System.out.println("4、run()方法正常结束") ;
    }
};
public class ThreadInterruptDemo{
    public static void main(String args[]){
        MyThread mt = new MyThread() ;  // 实例化Runnable子类对象
        Thread t = new Thread(mt,"线程");     // 实例化Thread对象
        t.start() ; // 启动线程
        try{
            Thread.sleep(2000) ;    // 线程休眠2秒
        }catch(InterruptedException e){
            System.out.println("3、休眠被终止") ;
        }
        t.interrupt() ; // 中断线程执行
    }
};

程序运行结果是:

后台线程

在 Java 程序中,只要前台有一个线程在运行,则整个 Java 进程都不会消失,所以此时可以设置一个后台线程,这样即使 Java 线程结束了,此后台线程依然会继续执行,要想实现这样的操作,直接使用 setDaemon() 方法即可。

class MyThread implements Runnable{ // 实现Runnable接口
    public void run(){  // 覆写run()方法
        while(true){
            System.out.println(Thread.currentThread().getName() + "在运行。") ;
        }
    }
};
public class ThreadDaemonDemo{
    public static void main(String args[]){
        MyThread mt = new MyThread() ;  // 实例化Runnable子类对象
        Thread t = new Thread(mt,"线程");     // 实例化Thread对象
        t.setDaemon(true) ; // 此线程在后台运行
        t.start() ; // 启动线程
    }
};

在线程类 MyThread 中,尽管 run() 方法中是死循环的方式,但是程序依然可以执行完,因为方法中死循环的线程操作已经设置成后台运行。

线程的优先级

在 Java 的线程操作中,所有的线程在运行前都会保持在就绪状态,那么此时,哪个线程的优先级高,哪个线程就有可能会先被执行。

class MyThread implements Runnable{ // 实现Runnable接口
    public void run(){  // 覆写run()方法
        for(int i=0;i<5;i++){
            try{
                Thread.sleep(500) ; // 线程休眠
            }catch(InterruptedException e){
            }
            System.out.println(Thread.currentThread().getName()
                    + "运行,i = " + i) ;  // 取得当前线程的名字
        }
    }
};
public class ThreadPriorityDemo{
    public static void main(String args[]){
        Thread t1 = new Thread(new MyThread(),"线程A") ;  // 实例化线程对象
        Thread t2 = new Thread(new MyThread(),"线程B") ;  // 实例化线程对象
        Thread t3 = new Thread(new MyThread(),"线程C") ;  // 实例化线程对象
        t1.setPriority(Thread.MIN_PRIORITY) ;   // 优先级最低
        t2.setPriority(Thread.MAX_PRIORITY) ;   // 优先级最高
        t3.setPriority(Thread.NORM_PRIORITY) ;  // 优先级最中等
        t1.start() ;    // 启动线程
        t2.start() ;    // 启动线程
        t3.start() ;    // 启动线程
    }
};

程序运行结果:

从程序的运行结果中可以观察到,线程将根据其优先级的大小来决定哪个线程会先运行,但是需要注意并非优先级越高就一定会先执行,哪个线程先执行将由 CPU 的调度决定。

线程的礼让

在线程操作中,也可以使用 yield() 方法将一个线程的操作暂时让给其他线程执行

class MyThread implements Runnable{ // 实现Runnable接口
    public void run(){  // 覆写run()方法
        for(int i=0;i<5;i++){
            try{
                Thread.sleep(500) ;
            }catch(Exception e){
            }
            System.out.println(Thread.currentThread().getName()
                    + "运行,i = " + i) ;  // 取得当前线程的名字
            if(i==2){
                System.out.print("线程礼让:") ;
                Thread.currentThread().yield() ;    // 线程礼让
            }
        }
    }
};
public class ThreadYieldDemo{
    public static void main(String args[]){
        MyThread my = new MyThread() ;  // 实例化MyThread对象
        Thread t1 = new Thread(my,"线程A") ;
        Thread t2 = new Thread(my,"线程B") ;
        t1.start() ;
        t2.start() ;
    }
};

程序执行结果:

同步以及死锁

一个多线程的程序如果是通过 Runnable 接口实现的,则意味着类中的属性被多个线程共享,那么这样就会造成一种问题,如果这多个线程要操作同一个资源时就有可能出现资源同步问题。

解决方法:

同步代码块

synchronized(同步对象){ 
  需要同步的代码 

class MyThread implements Runnable{
    private int ticket = 5 ;    // 假设一共有5张票
    public void run(){
        for(int i=0;i<100;i++){
            synchronized(this){ // 要对当前对象进行同步
                if(ticket>0){   // 还有票
                    try{
                        Thread.sleep(300) ; // 加入延迟
                    }catch(InterruptedException e){
                        e.printStackTrace() ;
                    }
                    System.out.println("卖票:ticket = " + ticket-- );
                }
            }
        }
    }
};
public class SyncDemo02{
    public static void main(String args[]){
        MyThread mt = new MyThread() ;  // 定义线程对象
        Thread t1 = new Thread(mt) ;    // 定义Thread对象
        Thread t2 = new Thread(mt) ;    // 定义Thread对象
        Thread t3 = new Thread(mt) ;    // 定义Thread对象
        t1.start() ;
        t2.start() ;
        t3.start() ;
    }
};

程序执行结果:

同步方法

除了可以将需要的代码设置成同步代码块外,也可以使用 synchronized 关键字将一个方法声明为同步方法。

synchronized 方法返回值 方法名称(参数列表){
 
 }

class MyThread implements Runnable{
    private int ticket = 5 ;    // 假设一共有5张票
    public void run(){
        for(int i=0;i<100;i++){
            this.sale() ;   // 调用同步方法
        }
    }
    public synchronized void sale(){    // 声明同步方法
        if(ticket>0){   // 还有票
            try{
                Thread.sleep(300) ; // 加入延迟
            }catch(InterruptedException e){
                e.printStackTrace() ;
            }
            System.out.println("卖票:ticket = " + ticket-- );
        }

    }
};
public class SyncDemo03{
    public static void main(String args[]){
        MyThread mt = new MyThread() ;  // 定义线程对象
        Thread t1 = new Thread(mt) ;    // 定义Thread对象
        Thread t2 = new Thread(mt) ;    // 定义Thread对象
        Thread t3 = new Thread(mt) ;    // 定义Thread对象
        t1.start() ;
        t2.start() ;
        t3.start() ;
    }
};

程序执行结果:

从程序运行的结果可以发现,此代码完成了与之前同步代码同样的功能。

死锁

同步可以保证资源共享操作的正确性,但是过多同步也会产生问题。例如,现在张三想要李四的画,李四想要张三的书,张三对李四说“把你的画给我,我就给你书”,李四也对张三说“把你的书给我,我就给你画”两个人互相等对方先行动,就这么干等没有结果,这实际上就是死锁的概念。

所谓死锁,就是两个线程都在等待对方先完成,造成程序的停滞,一般程序的死锁都是在程序运行时出现的。

下面以一个简单范例说明这个概念

class Zhangsan{ // 定义张三类
    public void say(){
        System.out.println("张三对李四说:“你给我画,我就把书给你。”") ;
    }
    public void get(){
        System.out.println("张三得到画了。") ;
    }
};
class Lisi{ // 定义李四类
    public void say(){
        System.out.println("李四对张三说:“你给我书,我就把画给你”") ;
    }
    public void get(){
        System.out.println("李四得到书了。") ;
    }
};
public class ThreadDeadLock implements Runnable{
    private static Zhangsan zs = new Zhangsan() ;       // 实例化static型对象
    private static Lisi ls = new Lisi() ;       // 实例化static型对象
    private boolean flag = false ;  // 声明标志位,判断那个先说话
    public void run(){  // 覆写run()方法
        if(flag){
            synchronized(zs){   // 同步张三
                zs.say() ;
                try{
                    Thread.sleep(500) ;
                }catch(InterruptedException e){
                    e.printStackTrace() ;
                }
                synchronized(ls){
                    zs.get() ;
                }
            }
        }else{
            synchronized(ls){
                ls.say() ;
                try{
                    Thread.sleep(500) ;
                }catch(InterruptedException e){
                    e.printStackTrace() ;
                }
                synchronized(zs){
                    ls.get() ;
                }
            }
        }
    }
    public static void main(String args[]){
        ThreadDeadLock t1 = new ThreadDeadLock() ;      // 控制张三
        ThreadDeadLock t2 = new ThreadDeadLock() ;      // 控制李四
        t1.flag = true ;
        t2.flag = false ;
        Thread thA = new Thread(t1) ;
        Thread thB = new Thread(t2) ;
        thA.start() ;
        thB.start() ;
    }
};

程序运行结果:


以下代码不再执行,程序进入死锁状态。

到此这篇关于Java多线程详细总结的文章就介绍到这了,更多相关Java多线程内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 一篇文中细看Java多线程的创建方式

    前言 Java现在有四种创建的方式:继承Threa类.实现Runnable接口.实现Callable接口.线程池 Thread.Runnable都在java.lang包下:Callable.线程池都在java.util.concurrent包下 1.继承Thread类,重写run方法 创建一个类继承Thread类,并重写run():因为run()是线程具体执行的方法. 在测试类或者main()创建Thread对象,并调用start()启动线程 备注:start()是启动线程,run()是线程执行

  • JAVA多线程线程安全性基础

    目录 线程安全性 什么是线程安全的代码 什么是线程安全性 总结 线程安全性 一个对象是否需要是线程安全的,取决于它是否被多个线程访问,而不取决于对象要实现的功能 什么是线程安全的代码 核心:对 共享的 和 可变的 状态的访问进行管理.防止对数据发生不受控的并发访问. 何为对象的状态? 状态是指存储在对象的状态变量(例如实例或静态域)中的数据.还可能包括 其他依赖对象 的域. eg:某个HashMap的状态不仅存储在HashMap对象本身,还存储在许多Map.Entry对象中. 总而言之,在对象的

  • java多线程:基础详解

    目录 Java内存模型 主内存和工作内存的交互命令 内存模型的原子性 内存模型的可见性 内存模型的有序性 指令重排优化的底层原理 valatile原理 volatile与加锁的区别 先行发生原则 线程的三种实现方式 总结 Java内存模型 Java内存模型与Java内存结构不同,Java内存结构指的是jvm内存分区.Java内存模型描述的是多线程环境下原子性,可见性,有序性的规则和保障. Java内存模型提供了主内存和工作内存两种抽象,主内存指的是共享区域 ,工作内存指的是线程私有工作空间. 当

  • Java多线程下解决数据安全问题

    目录 同步代码块 同步方法 lock锁 同步代码块 基本语句 synchronized (任意对象) { 操作共享代码 } 代码示例 public class SellTicket implements Runnable { private int tickets = 100; private Object object = new Object(); @Override public void run() { while (true) { synchronized (object) { if

  • 学习java多线程

    目录 介绍 为什么需要多线程 线程状态转换 线程使用方式 继承 Thread 类 实现 Runnable 接口 实现 Callable 接口 同步代码---Runnable接口方式 同步方法--Runnable接口方法 同步方法---继承方法 synchronized锁机制 死锁 Lock锁机制 介绍 程序(program)是为完成特定任务.用某种语言编写的一组指令的集合.即指一段静态的代码,静态对象. 进程(process)是程序的一次执行过程,或是正在运行的一个程序.是一个动态的过程:有它自

  • Java创建多线程的8种方式集合

    目录 1.继承Thread类,重写run()方法 2.实现Runnable接口,重写run() 3.匿名内部类的方式 4.带返回值的线程(实现implements Callable<返回值类型>) 5.定时器(java.util.Timer) 6.线程池的实现(java.util.concurrent.Executor接口) 7.Lambda表达式的实现(parallelStream) 8.Spring实现多线程 1.继承Thread类,重写run()方法 //方式1 package cn.i

  • Java多线程深入理解

    目录 线程 Thread类 Runnable接口创建线程 Thread和Runnable的区别 匿名内部类方式实现线程的创建 线程安全 线程安全 线程同步 同步方法 Lock锁 线程状态 等待唤醒机制 线程间通信 等待唤醒机制 生产者与消费者问题 线程池 线程池的概念 线程池的使用 总结 多线程 并发与并行 并发:指两个或多个事件在同一个时间段内发生. 并行:指两个或多个事件在同一时刻发生(同时发生). 在操作系统中,安装了多个程序,并发指的是在一段时间内宏观上有多个程序同时运行,这在单 CPU

  • 运用示例详细总结Java多线程

    目录 进程与线程 Java中线程实现的方式 实现 Runnable 接口 继承 Thread 类 Thread 类和 Runnable 接口 线程的状态变化 取得和设置线程的名称 线程的操作方法 线程的强制运行 线程的休眠 中断线程 后台线程 线程的优先级 线程的礼让 同步以及死锁 同步代码块 同步方法 进程与线程 进程是程序的一次动态执行过程,它需要经历从代码加载,代码执行到执行完毕的一个完整的过程,这个过程也是进程本身从产生,发展到最终消亡的过程.多进程操作系统能同时达运行多个进程(程序),

  • 详细解读JAVA多线程实现的三种方式

    最近在做代码优化时学习和研究了下JAVA多线程的使用,看了菜鸟们的见解后做了下总结. 1.继承Thread类实现多线程 继承Thread类的方法尽管被我列为一种多线程实现方式,但Thread本质上也是实现了Runnable接口的一个实例,它代表一个线程的实例,并且,启动线程的唯一方法就是通过Thread类的start()实例方法.start()方法是一个native方法,它将启动一个新线程,并执行run()方法.这种方式实现多线程很简单,通过自己的类直接extend Thread,并复写run(

  • Java多线程之显示锁和内置锁总结详解

    总结多线程之显示锁和内置锁 Java中具有通过Synchronized实现的内置锁,和ReentrantLock实现的显示锁,这两种锁各有各的好处,算是互有补充,这篇文章就是做一个总结. *Synchronized* 内置锁获得锁和释放锁是隐式的,进入synchronized修饰的代码就获得锁,走出相应的代码就释放锁. synchronized(list){ //获得锁 list.append(); list.count(); }//释放锁 通信 与Synchronized配套使用的通信方法通常

  • Java多线程同步器代码详解

    同步器 为每种特定的同步问题提供了解决方案,同步器是一些使线程能够等待另一个线程的对象,允许它们协调动作.最常用的同步器是CountDownLatch和Semaphore,不常用的是Barrier 和Exchanger Semaphore Semaphore[信号标:旗语],通过计数器控制对共享资源的访问. 测试类: package concurrent; import concurrent.thread.SemaphoreThread; import java.util.concurrent.

  • Java多线程Queue、BlockingQueue和使用BlockingQueue实现生产消费者模型方法解析

    Queue是什么 队列,是一种数据结构.除了优先级队列和LIFO队列外,队列都是以FIFO(先进先出)的方式对各个元素进行排序的.无论使用哪种排序方式,队列的头都是调用remove()或poll()移除元素的.在FIFO队列中,所有新元素都插入队列的末尾. Queue中的方法 Queue中的方法不难理解,6个,每2对是一个也就是总共3对.看一下JDKAPI就知道了: 注意一点就好,Queue通常不允许插入Null,尽管某些实现(比如LinkedList)是允许的,但是也不建议. Blocking

  • Java多线程编程实现socket通信示例代码

    流传于网络上有关Java多线程通信的编程实例有很多,这一篇还算比较不错,代码可用.下面看看具体内容. TCP是Tranfer Control Protocol的 简称,是一种面向连接的保证可靠传输的协议.通过TCP协议传输,得到的是一个顺序的无差错的数据流.发送方和接收方的成对的两个socket之间必须建 立连接,以便在TCP协议的基础上进行通信,当一个socket(通常都是server socket)等待建立连接时,另一个socket可以要求进行连接,一旦这两个socket连接起来,它们就可以

  • java多线程之线程同步七种方式代码示例

    为何要使用同步?  java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查),     将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用,     从而保证了该变量的唯一性和准确性. 1.同步方法  即有synchronized关键字修饰的方法.     由于java的每个对象都有一个内置锁,当用此关键字修饰方法时,     内置锁会保护整个方法.在调用该方法前,需要获得内置锁,否则就处于阻塞状态.     代码

  • Java多线程 原子操作类详细

    目录 1.What and Why 2.原子更新基本类型类 3.实现原理 4.原子更新数组 5.原子更新引用类型 6.原子更新字段类 1.What and Why 原子的本意是不能被分割的粒子,而对于一个操作来说,如果它是不可被中断的一个或者一组操作,那么他就是原子操作.显然,原子操作是安全的,因为它不会被打断. 平时我们见到的很多操作看起来是原子操作,但其实是非原子操作,例如很常见的i++操作,它背后有取值.加一.写回等操作,如果有两个线程都要对 i 进行加一操作,就有可能结果把i只变成了2,

  • Java多线程并发开发之DelayQueue使用示例

    在学习Java 多线程并发开发过程中,了解到DelayQueue类的主要作用:是一个无界的BlockingQueue,用于放置实现了Delayed接口的对象,其中的对象只能在其到期时才能从队列中取走.这种队列是有序的,即队头对象的延迟到期时间最长.注意:不能将null元素放置到这种队列中. Delayed,一种混合风格的接口,用来标记那些应该在给定延迟时间之后执行的对象.此接口的实现必须定义一个 compareTo 方法,该方法提供与此接口的 getDelay 方法一致的排序. 在网上看到了一些

  • java 多线程-锁详解及示例代码

    自 Java 5 开始,java.util.concurrent.locks 包中包含了一些锁的实现,因此你不用去实现自己的锁了.但是你仍然需要去了解怎样使用这些锁. 一个简单的锁 让我们从 java 中的一个同步块开始: public class Counter{ private int count = 0; public int inc(){ synchronized(this){ return ++count; } } } 可以看到在 inc()方法中有一个 synchronized(th

随机推荐