python opencv旋转图片的使用方法

背景

在图像处理中,有的时候会有对图片进行角度旋转的处理,尤其是在计算机视觉中对于图像扩充,旋转角度扩充图片是一种常见的处理。这种旋转图片的应用场景也比较多,比如用户上传图片是竖着的时候,不好进行处理,也需要对其进行旋转,以便后续算法处理。常见的旋转处理有两种方式,一种是转化为numpy矩阵后,对numpy矩阵进行处理,另外一种是使用opencv自带的函数进行各种变换处理,以实现旋转角度的结果。

原始图像:

opencv函数

旋转中常用的函数有以下几个函数

cv2.transpose: 对图像矩阵进行转置处理

img = cv2.imread(origin_img_path)
img_transpose = cv2.transpose(img)
cv2.imshow('transpose', img_transpose)
cv2.waitKey(0)

cv2.flip : 对图像矩阵进行翻转处理,参数可以设置为1,0,-1,分别对应着水平翻转、垂直翻转、水平垂直翻转。

img = cv2.imread(origin_img_path)
img_flip = cv2.flip(img, 1)
cv2.imshow('flip', img_flip)
cv2.waitKey(0)

cv2.getRotationMatrix2D: 构建旋转矩阵M,后续旋转时候只需要与旋转矩阵进行乘积即可完成旋转操作

旋转矩阵M

img = cv2.imread(origin_img_path)
rows, cols = img.shape
# 这里的第一个参数为旋转中心,第二个为旋转角度,第三个为旋转后的缩放因子
# 可以通过设置旋转中心,缩放因子以及窗口大小来防止旋转后超出边界的问题
M = cv2.getRotationMatrix2D((cols/2,rows/2),45,0.6)

cv2.warpAffine: 对图像进行仿射变换,一般进行平移或者旋转操作

img = cv2.imread(origin_img_path)
cv2.warpAffine(img, M,(lengh,lengh),borderValue=(255,255,255))  # M为上面的旋转矩阵

numpy函数

numpy实现旋转一般是使用numpy.rot90对图像进行90度倍数的旋转操作

官方介绍:

numpy.rot90(m, k=1, axes=(0, 1))[source]

Rotate an array by 90 degrees in the plane specified by axes.

Rotation direction is from the first towards the second axis.

k: Number of times the array is rotated by 90 degrees.

关键参数k表示旋转90度的倍数,k的取值一般为1、2、3,分别表示旋转90度、180度、270度;k也可以取负数,-1、-2、-3。k取正数表示逆时针旋转,取负数表示顺时针旋转。

旋转90度

逆时针

  • 使用opencv函数的转置操作+翻转操作实现旋转
  • 使用numpy.rot90实现
def rotateAntiClockWise90(img_file):  # 逆时针旋转90度
	img = cv2.imread(img_file)
    trans_img = cv2.transpose(img)
    img90 = cv2.flip(trans_img, 0)
    cv2.imshow("rotate", img90)
    cv2.waitKey(0)
    return img90

def totateAntiClockWise90ByNumpy(img_file):  # np.rot90(img, -1) 逆时针旋转90度
    img = cv2.imread(img_file)
    img90 = np.rot90(img, -1)
    cv2.imshow("rotate", img90)
    cv2.waitKey(0)
    return img90

顺时针

def rotateClockWise90(self, img_file):
	img = cv2.imread(img_file)
    trans_img = cv2.transpose( img )
    img90 = cv2.flip(trans_img, 1)
    cv2.imshow("rotate", img90)
    cv2.waitKey(0)
    return img90

def totateClockWise90ByNumpy(img_file):  # np.rot90(img, 1) 顺时针旋转90度
    img = cv2.imread(img_file)
    img90 = np.rot90(img, 1)
    cv2.imshow("rotate", img90)
    cv2.waitKey(0)
    return img90

旋转180度、270度

使用numpy.rot90实现旋转180度、270度

180度

img180 = np.rot90(img, 2)
cv2.imshow("rotate", img180)
cv2.waitKey(0)

270 度

img270 = np.rot90(img, 3)
cv2.imshow("rotate", img270)
cv2.waitKey(0)

旋转任意角度,以任意色值填充背景

import cv2
from math import *
import numpy as np

# 旋转angle角度,缺失背景白色(255, 255, 255)填充
def rotate_bound_white_bg(image, angle):
    # grab the dimensions of the image and then determine the
    # center
    (h, w) = image.shape[:2]
    (cX, cY) = (w // 2, h // 2)

    # grab the rotation matrix (applying the negative of the
    # angle to rotate clockwise), then grab the sine and cosine
    # (i.e., the rotation components of the matrix)
    # -angle位置参数为角度参数负值表示顺时针旋转; 1.0位置参数scale是调整尺寸比例(图像缩放参数),建议0.75
    M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
    cos = np.abs(M[0, 0])
    sin = np.abs(M[0, 1])

    # compute the new bounding dimensions of the image
    nW = int((h * sin) + (w * cos))
    nH = int((h * cos) + (w * sin))

    # adjust the rotation matrix to take into account translation
    M[0, 2] += (nW / 2) - cX
    M[1, 2] += (nH / 2) - cY

    # perform the actual rotation and return the image
    # borderValue 缺失背景填充色彩,此处为白色,可自定义
    return cv2.warpAffine(image, M, (nW, nH),borderValue=(255,255,255))
    # borderValue 缺省,默认是黑色(0, 0 , 0)
    # return cv2.warpAffine(image, M, (nW, nH))

img = cv2.imread("dog.png")
imgRotation = rotate_bound_white_bg(img, 45)

cv2.imshow("img",img)
cv2.imshow("imgRotation",imgRotation)
cv2.waitKey(0)

45度

60度

参考

cv2.getRotationMatrix2D博客介绍

cv2.warpAffine 博客介绍

numpy.rot90

旋转任意角度

到此这篇关于python opencv旋转图片的使用方法的文章就介绍到这了,更多相关python opencv旋转图片内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python opencv实现图片旋转矩形分割

    有时候需要对有角度的矩形框内图像从原图片中分割出来.这里的程序思想是,先将图片进行矩形角度的旋转,使有角度的矩形处于水平状态后,根据原来坐标分割图片. 参考:python opencv实现旋转矩形框裁减功能 修改原来的程序: 1.旋转函数的输入仅为矩形的四点坐标 2.角度由公式计算出来 3.矩形四点pt1,pt2,pt3,pt4由txt文件读入 4.在旋转程序中还处理了顺时针和逆时针及出现矩形框翻转的问题. 代码: # -*- coding:utf-8 -*- import cv2 from m

  • python opencv对图像进行旋转且不裁剪图片的实现方法

    最近在做深度学习时需要用到图像处理相关的操作,在度娘上找到的图片旋转方法千篇一律,旋转完成的图片都不是原始大小,很苦恼,于是google到歪果仁的网站扒拉了一个方法,亲测好用,再次嫌弃天下文章一大抄的现象,虽然我也是抄歪果仁的. 废话不多说了,直接贴代码了. def rotate_bound(image, angle): # grab the dimensions of the image and then determine the # center (h, w) = image.shape[

  • Python+OpenCV 实现图片无损旋转90°且无黑边

    0. 引言 有如上一张图片,在以往的图像旋转处理中,往往得到如图所示的图片. 然而,在进行一些其他图像处理或者图像展示时,黑边带来了一些不便.本文解决图片旋转后出现黑边的问题,实现了图片尺寸不变的旋转(以上提到的黑边是图片的一部分). 1. 方法流程 (1)旋转图片,得到有黑边的旋转图片. (2)找出图片区域(不含黑边)的位置. (3)创建一个空图片(其实是矩阵). (4)将图片区域搬到此空图片. 2. 程序 #!/usr/bin/python # -*- coding: UTF-8 -*- "

  • 基于OpenCV和C++ 实现图片旋转

    图片旋转,本质上是对旋转后的图片中每个像素点计算在原图的位置.然后照搬过来就好. (多说一句,如果计算出来在原图中的位置不是整数而是小数,因为像素点个数都是整数,就需要小数到整数的转换.这个转换过程是有讲究的,需要用到插值:最近邻插值.双线性插值等等.这里我使用的是最简单的最近邻插值,即对小数四舍五入成整数,C/C++ 实现四舍五入见 这里 ) 图形图像课上一般会介绍旋转变换矩阵,其中 t 为需要旋转的角度,[x'; y']是变换后坐标(其中分号表示上下关系): 即表示为:[x'; y'] =

  • Python+OpenCV+图片旋转并用原底色填充新四角的例子

    我就废话不多说了,直接上代码吧! import cv2 from math import fabs, sin, cos, radians import numpy as np from scipy.stats import mode def get_img_rot_broa(img, degree=45, filled_color=-1): """ Desciption: Get img rotated a certain degree, and use some color

  • python opencv旋转图片的使用方法

    背景 在图像处理中,有的时候会有对图片进行角度旋转的处理,尤其是在计算机视觉中对于图像扩充,旋转角度扩充图片是一种常见的处理.这种旋转图片的应用场景也比较多,比如用户上传图片是竖着的时候,不好进行处理,也需要对其进行旋转,以便后续算法处理.常见的旋转处理有两种方式,一种是转化为numpy矩阵后,对numpy矩阵进行处理,另外一种是使用opencv自带的函数进行各种变换处理,以实现旋转角度的结果. 原始图像: opencv函数 旋转中常用的函数有以下几个函数 cv2.transpose: 对图像矩

  • Python OpenCV实现图片预处理的方法详解

    目录 一.图片预处理 1.1 边界填充(padding) 1.2 融合图片(mixup) 1.3 图像阈值 二.滤波器 2.1 均值滤波器 2.2 方框滤波器 2.3 高斯滤波器 2.4 中值滤波 2.5 所有滤波器按照上述顺序输出 一.图片预处理 1.1 边界填充(padding) 方法 : cv2.copyMakeBorder BORDER_REPLICATE:复制法,也就是复制最边缘像素. BORDER_REFLECT:反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abc

  • python opencv 读取图片 返回图片某像素点的b,g,r值的实现方法

    如下所示: #coding=utf-8 #读取图片 返回图片某像素点的b,g,r值 import cv2 import numpy as np img=cv2.imread('./o.jpg') px=img[10,10] print px blue=img[10,10,0] print blue green=img[10,10,1] print blue red=img[10,10,2] print blue 以上这篇python opencv 读取图片 返回图片某像素点的b,g,r值的实现方

  • python opencv 直方图反向投影的方法

    本文介绍了python opencv 直方图反向投影的方法,分享给大家,具体如下: 目标: 直方图反向投影 原理: 反向投影可以用来做图像分割,寻找感兴趣区间.它会输出与输入图像大小相同的图像,每一个像素值代表了输入图像上对应点属于目标对象的概率,简言之,输出图像中像素值越高的点越可能代表想要查找的目标.直方图投影经常与camshift(追踪算法)算法一起使用. 算法实现的方法,首先要为包含我们感兴趣区域的图像建立直方图(样例要找一片草坪,其他的不要).被查找的对象最好是占据整个图像(图像里全是

  • python实现旋转和水平翻转的方法

    如下所示: # coding=utf-8 import glob import os from PIL import Image def rotate_270(imgae): """ 将图片旋转270度 """ # 读取图像 im = Image.open(imgae) # im.show() # 指定逆时针旋转的角度 im_rotate = im.rotate(270) # im_rotate.show() return im_rotate d

  • python opencv实现图片缺陷检测(讲解直方图以及相关系数对比法)

    一.利用直方图的方式进行批量的图片缺陷检测(方法简单) 二.步骤(完整代码见最后) 2.1灰度转换(将原图和要检测对比的图分开灰度化) 灰度化的作用是因为后面的直方图比较需要以像素256为基准进行相关性比较 img = cv2.imread("0.bmp") #原图灰度转换 gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) #循环要检测的图,均灰度化 for i in range(1, 6): t1=cv2.cvtColor(cv2.imread

  • Python Opencv实现图片切割处理

    本文实例为大家分享了Python Opencv实现图片的切割处理,供大家参考,具体内容如下 Opencv对图片的切割: 方法一: import os from PIL import Image def splitimage(src, rownum, colnum, dstpath):     img = Image.open(src)     w, h = img.size     if rownum <= h and colnum <= w:         print('Original

  • Python+OpenCV实现阈值分割的方法详解

    目录 一.全局阈值 1.效果图 2.源码 二.滑动改变阈值(滑动条) 1.效果图 2.源码 三.自适应阈值分割 1.效果图 2.源码 3.GaussianBlur()函数去噪 四.参数解释 一.全局阈值 原图: 整幅图采用一个阈值,与图片的每一个像素灰度进行比较,重新赋值: 1.效果图 2.源码 import cv2 import matplotlib.pyplot as plt #设定阈值 thresh=130 #载入原图,并转化为灰度图像 img_original=cv2.imread(r'

  • python OpenCV计算图片相似度的5种算法

    目录 5种算法 参考文章: 原始两张图片: 代码运行结果如下. 5种算法 值哈希算法.差值哈希算法和感知哈希算法都是值越小,相似度越高,取值为0-64,即汉明距离中,64位的hash值有多少不同. 三直方图和单通道直方图的值为0-1,值越大,相似度越高. 源代码如下: import cv2 import numpy as np from PIL import Image import requests from io import BytesIO import matplotlib matplo

随机推荐