Go缓冲channel和非缓冲channel的区别说明

在看本篇文章前我们需要了解阻塞的概念

在执行过程中暂停,以等待某个条件的触发 ,我们就称之为阻塞

在Go中我们make一个channel有两种方式,分别是有缓冲的和没缓冲的

缓冲channel 即 buffer channel 创建方式为 make(chan TYPE,SIZE)

如 make(chan int,3) 就是创建一个int类型,缓冲大小为3的 channel

非缓冲channel 即 unbuffer channel 创建方式为 make(chan TYPE)

如 make(chan int) 就是创建一个int类型的非缓冲channel

非缓冲channel 和 缓冲channel 的区别

非缓冲 channel,channel 发送和接收动作是同时发生的

例如 ch := make(chan int) ,如果没 goroutine 读取接收者<-ch ,那么发送者ch<- 就会一直阻塞

缓冲 channel 类似一个队列,只有队列满了才可能发送阻塞

代码演示

非缓冲 channel

package main
import (
 "fmt"
 "time"
)
func loop(ch chan int) {
 for {
  select {
  case i := <-ch:
   fmt.Println("this  value of unbuffer channel", i)
  }
 }
}
func main() {
 ch := make(chan int)
 ch <- 1
 go loop(ch)
 time.Sleep(1 * time.Millisecond)
}

这里会报错 fatal error: all goroutines are asleep - deadlock! 就是因为 ch<-1 发送了,但是同时没有接收者,所以就发生了阻塞

但如果我们把 ch <- 1 放到 go loop(ch) 下面,程序就会正常运行

缓冲 channel

的阻塞只会发生在 channel 的缓冲使用完的情况下

package main
import (
 "fmt"
 "time"
)
func loop(ch chan int) {
 for {
  select {
  case i := <-ch:
   fmt.Println("this  value of unbuffer channel", i)
  }
 }
}
func main() {
 ch := make(chan int,3)
 ch <- 1
 ch <- 2
 ch <- 3
 ch <- 4
 go loop(ch)
 time.Sleep(1 * time.Millisecond)
}

这里也会报 fatal error: all goroutines are asleep - deadlock! ,这是因为 channel 的大小为 3 ,而我们要往里面塞 4 个数据,所以就会阻塞住

解决的办法有两个

把 channel 开大一点,这是最简单的方法,也是最暴力的

把 channel 的信息发送者 ch <- 1 这些代码移动到 go loop(ch) 下面 ,让 channel 实时消费就不会导致阻塞了

补充:3种优雅的Go channel用法

写Go的人应该都听过Rob Pike的这句话

Do not communicate by sharing memory; instead, share memory by communicating.

相信很多朋友和我一样,在实际应用中总感觉不到好处,为了用channel而用。但以我的切身体会来说,这是写代码时碰到的场景不复杂、对channel不熟悉导致的,所以希望这篇文章能给大家带来点新思路,对Golang优雅的channel有更深的认识 :)

Fan In/Out

数据的输出有时候需要做扇出/入(Fan In/Out),但是在函数中调用常常得修改接口,而且上下游对于数据的依赖程度非常高,所以一般使用通过channel进行Fan In/Out,这样就可以轻易实现类似于shell里的管道。

func fanIn(input1, input2 <-chan string) <-chan string {
   c := make(chan string)
   go func() {
       for {
           select {
           case s := <-input1:  c <- s
           case s := <-input2:  c <- s
           }
       }
   }()
   return c
}

同步Goroutine

两个goroutine之间同步状态,例如A goroutine需要让B goroutine退出,一般做法如下:

func main() {
   g = make(chan int)
   quit = make(chan bool)
   go B()
   for i := 0; i < 3; i++ {
       g <- i
   }
   quit <- true // 没办法等待B的退出只能Sleep
   fmt.Println("Main quit")
}
func B() {
   for {
       select {
       case i := <-g:
           fmt.Println(i + 1)
       case <-quit:
           fmt.Println("B quit")
           return
       }
   }
}
/*
Output:
1
2
3
Main quit
*/

可是了main函数没办法等待B合适地退出,所以B quit 没办法打印,程序直接退出了。

然而,chan是Go里的第一对象,所以可以把chan传入chan中,所以上面的代码可以把quit 定义为chan chan bool,以此控制两个goroutine的同步

func main() {
   g = make(chan int)
   quit = make(chan chan bool)
   go B()
   for i := 0; i < 5; i++ {
       g <- i
   }
   wait := make(chan bool)
   quit <- wait
   <-wait //这样就可以等待B的退出了
   fmt.Println("Main Quit")
}
func B() {
   for {
       select {
       case i := <-g:
           fmt.Println(i + 1)
       case c := <-quit:
           c <- true
           fmt.Println("B Quit")
           return
       }
   }
}
/* Output
1
2
3
B Quit
Main Quit
*/

分布式递归调用

在现实生活中,如果你要找美国总统聊天,你会怎么做?

第一步打电话给在美国的朋友,然后他们也会发动自己的关系网,再找可能认识美国总统的人,以此类推,直到找到为止。

这在Kadmelia分布式系统中也是一样的,如果需要获取目标ID信息,那么就不停地查询,被查询节点就算没有相关信息,也会返回它觉得最近节点,直到找到ID或者等待超时。

好了,这个要用Go来实现怎么做呢?

func recursiveCall(ctx context.Context, id []byte, initialNodes []*node){
	seen := map[string]*node{} //已见过的节点记录
	request := make(chan *node, 3) //设置请求节点channel
        // 输入初始节点
	go func() {
		for _, n := range initialNodes {
			request <- n
		}
	}()
OUT:
	for {
               //循环直到找到数据
		if data != nil {
		    return
		}
                // 在新的请求,超时和上层取消请求中select
		select {
		case n := <-request:
			go func() {
                                // 发送新的请求
				response := s.sendQuery(ctx, n, MethodFindValue, id)
				select {
				case <-ctx.Done():
				case msg :=<-response:
                                    seen[responseToNode(response)] = n //更新已见过的节点信息
                                                // 加载新的节点
						for _, rn := range LoadNodeInfoFromByte(msg[PayLoadStart:]) {
							mu.Lock()
							_, ok := seen[rn.HexID()]
							mu.Unlock()
                                                        // 见过了,跳过这个节点
							if ok {
 								continue
							}
							AddNode(rn)
                                                        // 将新的节点送入channel
							request <- rn
						}
					}
				}
			}()
		case <-time.After(500 * time.Millisecond):
			break OUT // break至外层,否则仅仅是跳至loop外
        	case <-ctx.Done():
			break OUT
		}
	}
	return
}

这时的buffered channel类似于一个局部queue,对需要的节点进行处理,但这段代码的精妙之处在于,这里的block操作是select的,随时可以取消,而不是要等待或者对queue的长度有认识。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • Golang的select多路复用及channel使用操作

    看到有个例子实现了一个类似于核弹发射装置,在发射之前还是需要随时能输入终止发射. 这里就可以用到cahnnel 配合select 实现多路复用. select的写法用法有点像switch.但是和switch不同的是,select的一个case代表一个通信操作(在某个channel上进行发送或者接收)并且会包含一些语句组成的一个语句块.现在让我们来实现一下这个核弹发射器 package main import ( "fmt" "time" "os"

  • Golang实现Directional Channel(定向通道)

    通道可以是定向的( directional ).在默认情况下,通道将以双向的( bidirectional )形式运作,用户既可以把值放人通道,也可以从通道取出值;但是,通道也可以被限制为只能执行发送操作( send-only )或者只能执行接收操作( receive-only ). 通常可以叫 定向通道 ,也有人叫 单向通道 ,两者其实都是指向这篇短文要讨论的 Directional Channel . 下面直接举例子说明: package onlyChannelTest import ( "

  • 详解Golang中Channel的用法

    如果说goroutine是Go语言程序的并发体的话,那么channels则是它们之间的通信机制.一个channel是一个通信机制,它可以让一个goroutine通过它给另一个goroutine发送值信息. 1 创建channel 每个channel都有一个特殊的类型,也就是channels可发送数据的类型.一个可以发送int类型数据 的channel一般写为chan int.使用内置的make函数,如果第二个参数大于0,则表示创建一个带缓存的channel. ch := make(chan in

  • 基于golang channel实现的轻量级异步任务分发器示例代码

    前言 有时候我们为了更好的利用计算机资源,可以把一些耗时长的任务队列化异步执行.举个对应简单的生活中例子就是大多数餐厅里面点菜都是先找地方做,看了菜单选好菜之后找服务员点菜,此时再等待菜做好送上来.这里餐厅厨房就是计算机的底层资源,菜就是待执行的任务,而服务员就是我们的go channel. 关于消息队列有很多好用的框架,如nsq,nats,kafka等等.但有时我们只需要轻量级的异步任务工具,而不需要太过于"复杂"的框架相对于我们的需求来说.于是借鉴一些项目框架,做了一个小小的封装.

  • golang中for循环遍历channel时需要注意的问题详解

    前言 for循环是Go语言唯一的循环结构,最近在做一个基于RabbitMQ的应用,由于官方的qos没有golang的版本,所以出了一点问题. 问题代码如下: _, ch, err := component.NewRabbitMQ() if err != nil { panic(err) } if err := ch.Qos(10, 0, true); err != nil { panic(err) } msgs, err := ch.Consume("push", "&quo

  • golang开发中channel使用

    channel[通道]是golang的一种重要特性,正是因为channel的存在才使得golang不同于其它语言.channel使得并发编程变得简单容易有趣. channel的概念和语法 一个channel可以理解为一个先进先出的消息队列.channel用来在协程[goroutine]之前传递数据,准确的说,是用来传递数据的所有权.一个设计良好的程序应该确保同一时刻channel里面的数据只会被同一个协程拥有,这样就可以避免并发带来的数据不安全问题[data races]. 正文 channel

  • Go缓冲channel和非缓冲channel的区别说明

    在看本篇文章前我们需要了解阻塞的概念 在执行过程中暂停,以等待某个条件的触发 ,我们就称之为阻塞 在Go中我们make一个channel有两种方式,分别是有缓冲的和没缓冲的 缓冲channel 即 buffer channel 创建方式为 make(chan TYPE,SIZE) 如 make(chan int,3) 就是创建一个int类型,缓冲大小为3的 channel 非缓冲channel 即 unbuffer channel 创建方式为 make(chan TYPE) 如 make(cha

  • PHP的中使用非缓冲模式查询数据库的方法

    最近在开发一个PHP程序时遇到了下面的错误: PHP Fatal error: Allowed memory size of 268 435 456 bytes exhausted 错误信息显示允许的最大内存已经耗尽.遇到这样的错误起初让我很诧异,但转眼一想,也不奇怪,因为我正在开发的这个程序是要用一个foreach循环语句在一个有4万条记录的表里全表搜索具有特定特征的数据,也就是说,一次要把4万条数据取出,然后逐条检查每天数据.可想而知,4万条数据全部加载到内存中,内存不爆才怪. 毕竟编程这么

  • php如何执行非缓冲查询API

    对于PHP的缓冲模式查询大家都知道,下面列举的例子是如何执行非缓冲查询API. 非缓冲查询方法一: mysqli <?php $mysqli = new mysqli("localhost", "my_user", "my_password", "world"); $uresult = $mysqli->query("SELECT Name FROM City", MYSQLI_USE_RESU

  • 对比PHP对MySQL的缓冲查询和无缓冲查询

    关于缓冲查询和无缓冲查询 MySQL的客户端有两种类型的查询: 缓冲查询:将接收查询的结果并把他们存储在客户端的缓存中,而且接下来获取行记录的请求仅仅从本地内获取. (1)优点:可以在结果集中自由地移动"当前行"的指针,这样很容易找到,因为结果是存在客户端的. (2)缺点:需要额外的内存来存储这些结果集,而且需要大量的内存,另外,php中用来运行查询的函数会一直到所有的结果都接收才会返回值. 无缓冲查询:会限制你通过严格的顺序访问查询结果.但他不需要额外的内存来存储整个结果集.你可以在

  • JS中使用正则表达式g模式和非g模式的区别

    先给大家说下js正则表达式中的g到底是什么意思 g是global的缩写啊! 就是匹配全部可匹配结果, 如果你不带g,在正则过程中,字符串是从左至右匹配的,如果匹配成功就不再继续向右匹配了,如果你带g,它会重头到尾的把正确匹配的字符串挑选出来 例如: var str = 'aaaaaaaa' var reg1 = /a/ var reg2 = /a/g str.match(reg1) // 结果为:["a", index: 0, input: "aaaaaaaa"]

  • C++ 中静态成员函数与非静态成员函数的区别

    静态成员函数与非静态成员函数的区别 数据成员: 静态数据成员是类的一部分,为类的所有实例共享(静态区):非静态数据成员,类的每个实例都有一份拷贝(动态区). 静态数据成员的访问: 静态数据成员是类的一部分,在产生任何实例之前已经存在,通过类名::静态成员变量名访问. 函数成员(都在代码区): 静态函数成员与非静态函数成员都为类所有,对象并不存在函数的拷贝.静态成员函数和非静态成员函数的根本区别在于非静态函数由对象名.或者对象指针->调用,调用时编译器会向函数传递this指针:静态成员函数则有类名

  • 浅析php静态方法与非静态方法的用法区别

    在php编程中,static关键字声明一个属性或方法是和类相关的,而不是和类的某个特定的实例相关,因此,这类属性或方法也称为"类属性"或"类方法" 如果访问控制权限允许,可不必创建该类对象而直接使用类名加两个冒号"::"调用. static关键字可以用来修饰变量.方法. 不经过实例化,就可以直接访问类中static的属性和static的方法. static 的属性和方法,只能访问static的属性和方法,不能类访问非静态的属性和方法.因为静态属性

  • javascript严格模式详解(含严格模式与非严格模式的区别)

    严格模式的优缺点 优点: 提高代码解析与运行速度 禁用一些不合理的语法,减少代码的怪异行为 缺点 某些代码在严格模式下会报错,尤其引入公用与第三方模块的时候需要注意 有些严格模式的特性在不同浏览器的支持情况不同,需要注意兼容问题 严格模式与非严格模式的区别 1.禁用with语法,使用将报错 因为解析with语法时作用域的情况会非常复杂,严重影响代码的解析与运行速度 function usualMode() { with({a: 1}) { console.log(a) } } usalMode(

  • 简述JAVA同步、异步、阻塞和非阻塞之间的区别

    同步和异步,阻塞和非阻塞是大家经常会听到的概念,但是它们是从不同维度来描述一件事情,常常很容易混为一谈. 1. 同步和异步 同步和异步描述的是消息通信的机制. 同步 当一个request发送出去以后,会得到一个response,这整个过程就是一个同步调用的过程.哪怕response为空,或者response的返回特别快,但是针对这一次请求而言就是一个同步的调用. 异步 当一个request发送出去以后,没有得到想要的response,而是通过后面的callback.状态或者通知的方式获得结果.可

  • C#中托管DLL和非托管DLL的区别详解

    首先解释一下,托管DLL和非托管DLL的区别.狭义解释讲,托管DLL就在Dotnet环境生成的DLL文件.非托管DLL不是在Dotnet环境生成的DLL文件. 托管DLL文件,可以在Dotnet环境通过 "添加引用" 的方式,直接把托管DLL文件添加到项目中.然后通过 Using DLL命 名空间,来调用相应的DLL对象 .  非托管DLL文件,在Dotnet环境应用时,通过 DllImport 调用. C# 调用非托管DLL文件.DLL文件是用C语言编写的. 托管DLL就是能够在公共

随机推荐