超详细PyTorch实现手写数字识别器的示例代码

前言

深度学习中有很多玩具数据,mnist就是其中一个,一个人能否入门深度学习往往就是以能否玩转mnist数据来判断的,在前面很多基础介绍后我们就可以来实现一个简单的手写数字识别的网络了

数据的处理

我们使用pytorch自带的包进行数据的预处理

import torch
import torchvision
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt

transform = transforms.Compose([
  transforms.ToTensor(),
  transforms.Normalize((0.5), (0.5))
])
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True,num_workers=2)

注释:transforms.Normalize用于数据的标准化,具体实现
mean:均值 总和后除个数
std:方差 每个元素减去均值再平方再除个数

norm_data = (tensor - mean) / std

这里就直接将图片标准化到了-1到1的范围,标准化的原因就是因为如果某个数在数据中很大很大,就导致其权重较大,从而影响到其他数据,而本身我们的数据都是平等的,所以标准化后将数据分布到-1到1的范围,使得所有数据都不会有太大的权重导致网络出现巨大的波动
trainloader现在是一个可迭代的对象,那么我们可以使用for循环进行遍历了,由于是使用yield返回的数据,为了节约内存

观察一下数据

def imshow(img):
   img = img / 2 + 0.5 # unnormalize
   npimg = img.numpy()
   plt.imshow(np.transpose(npimg, (1, 2, 0)))
   plt.show()
# torchvision.utils.make_grid 将图片进行拼接
imshow(torchvision.utils.make_grid(iter(trainloader).next()[0]))

构建网络

from torch import nn
import torch.nn.functional as F
class Net(nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(in_channels=1, out_channels=28, kernel_size=5) # 14
    self.pool = nn.MaxPool2d(kernel_size=2, stride=2) # 无参数学习因此无需设置两个
    self.conv2 = nn.Conv2d(in_channels=28, out_channels=28*2, kernel_size=5) # 7
    self.fc1 = nn.Linear(in_features=28*2*4*4, out_features=1024)
    self.fc2 = nn.Linear(in_features=1024, out_features=10)
  def forward(self, inputs):
    x = self.pool(F.relu(self.conv1(inputs)))
    x = self.pool(F.relu(self.conv2(x)))
    x = x.view(inputs.size()[0],-1)
    x = F.relu(self.fc1(x))
    return self.fc2(x)

下面是卷积的动态演示

in_channels:为输入通道数 彩色图片有3个通道 黑白有1个通道
out_channels:输出通道数
kernel_size:卷积核的大小
stride:卷积的步长
padding:外边距大小

输出的size计算公式

  • h = (h - kernel_size + 2*padding)/stride + 1
  • w = (w - kernel_size + 2*padding)/stride + 1

MaxPool2d:是没有参数进行运算的

实例化网络优化器,并且使用GPU进行训练

net = Net()
opt = torch.optim.Adam(params=net.parameters(), lr=0.001)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
Net(
 (conv1): Conv2d(1, 28, kernel_size=(5, 5), stride=(1, 1))
 (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (conv2): Conv2d(28, 56, kernel_size=(5, 5), stride=(1, 1))
 (fc1): Linear(in_features=896, out_features=1024, bias=True)
 (fc2): Linear(in_features=1024, out_features=10, bias=True)
)

训练主要代码

for epoch in range(50):
  for images, labels in trainloader:
    images = images.to(device)
    labels = labels.to(device)
    pre_label = net(images)
    loss = F.cross_entropy(input=pre_label, target=labels).mean()
    pre_label = torch.argmax(pre_label, dim=1)
    acc = (pre_label==labels).sum()/torch.tensor(labels.size()[0], dtype=torch.float32)
    net.zero_grad()
    loss.backward()
    opt.step()
  print(acc.detach().cpu().numpy(), loss.detach().cpu().numpy())

F.cross_entropy交叉熵函数

源码中已经帮助我们实现了softmax因此不需要自己进行softmax操作了
torch.argmax计算最大数所在索引值

acc = (pre_label==labels).sum()/torch.tensor(labels.size()[0], dtype=torch.float32)
# pre_label==labels 相同维度进行比较相同返回True不同的返回False,True为1 False为0, 即可获取到相等的个数,再除总个数,就得到了Accuracy准确度了

预测

testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=True,num_workers=2)
images, labels = iter(testloader).next()
images = images.to(device)
labels = labels.to(device)
with torch.no_grad():
  pre_label = net(images)
  pre_label = torch.argmax(pre_label, dim=1)
  acc = (pre_label==labels).sum()/torch.tensor(labels.size()[0], dtype=torch.float32)
  print(acc)

总结

本节我们了解了标准化数据·卷积的原理简答的构建了一个网络,并让它去识别手写体,也是对前面章节的总汇了

到此这篇关于超详细PyTorch实现手写数字识别器的示例代码的文章就介绍到这了,更多相关PyTorch 手写数字识别器内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch 利用lstm做mnist手写数字识别分类的实例

    代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式. # -*- coding: utf-8 -*- """ Created on Tue Oct 9 08:53:25 2018 @author: www """ import sys sys.path.append('..') import torch import datetime from torch.autograd import Variable from torch im

  • 详解PyTorch手写数字识别(MNIST数据集)

    MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程.虽然网上的案例比较多,但还是要自己实现一遍.代码采用 PyTorch 1.0 编写并运行. 导入相关库 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, t

  • Pytorch实现的手写数字mnist识别功能完整示例

    本文实例讲述了Pytorch实现的手写数字mnist识别功能.分享给大家供大家参考,具体如下: import torch import torchvision as tv import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim import argparse # 定义是否使用GPU device = torch.device("cuda" if torch

  • PyTorch CNN实战之MNIST手写数字识别示例

    简介 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的. 卷积神经网络CNN的结构一般包含这几个层: 输入层:用于数据的输入 卷积层:使用卷积核进行特征提取和特征映射 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射 池化层:进行下采样,对特征图稀疏处理,减少数据运算量. 全连接层:通常在CNN的尾部进行重新拟合,减

  • 超详细PyTorch实现手写数字识别器的示例代码

    前言 深度学习中有很多玩具数据,mnist就是其中一个,一个人能否入门深度学习往往就是以能否玩转mnist数据来判断的,在前面很多基础介绍后我们就可以来实现一个简单的手写数字识别的网络了 数据的处理 我们使用pytorch自带的包进行数据的预处理 import torch import torchvision import torchvision.transforms as transforms import numpy as np import matplotlib.pyplot as plt

  • PyTorch实现手写数字识别的示例代码

    目录 加载手写数字的数据 数据加载器(分批加载) 建立模型 模型训练 测试集抽取数据,查看预测结果 计算模型精度 自己手写数字进行预测 加载手写数字的数据 组成训练集和测试集,这里已经下载好了,所以download为False import torchvision # 是否支持gpu运算 # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # print(device) # print(torch.cud

  • C++编程模板匹配超详细的识别手写数字实现示例

    首先,本篇文章用到的方法是模板匹配,而不是基于神经网络的,还请各位注意了!(模板匹配还请自行了解,站上有很多介绍)我刚开始做实验的时候只有一点c++基础,对于文件和opencv我一点都不了解,所以导致了我刚开始迷茫了很久,直到后来才渐渐做起来.废话不多说,让我们开始吧! 过程很简单,如下: 匹配成功:存在一个最小距离(这些距离相等),且为一个数字:存在多个最小距离,且为同一个数字. 拒绝识别:存在多个最小距离,且为不同数字. 识别错误:存在一个最小距离,但与被测数字不是相同的数字. 也许乍一看看

  • pytorch实现手写数字图片识别

    本文实例为大家分享了pytorch实现手写数字图片识别的具体代码,供大家参考,具体内容如下 数据集:MNIST数据集,代码中会自动下载,不用自己手动下载.数据集很小,不需要GPU设备,可以很好的体会到pytorch的魅力. 模型+训练+预测程序: import torch from torch import nn from torch.nn import functional as F from torch import optim import torchvision from matplot

  • PyTorch简单手写数字识别的实现过程

    目录 一.包导入及所需数据的下载 关于数据集引入的改动 二.进行数据处理变换操作 三.数据预览测试和数据装载 四.模型搭建和参数优化 关于模型搭建的改动 总代码: 测试 总结 具体流程: ① 导入相应的包,下载训练集和测试集对应需要的图像数据. ②进行图像数据的变换,使图像数据转化成pytorch可识别并计算的张量数据类型 ③数据预览测试和数据装载 ④模型搭建和参数优化 ⑤总代码 ⑥测试 一.包导入及所需数据的下载 torchvision包的主要功能是实现数据的处理.导入.预览等,所以如果需要对

  • PyTorch实现手写数字的识别入门小白教程

    目录 手写数字识别(小白入门) 1.数据预处理 2.训练模型 3.测试模型,保存 4.调用模型 5.完整代码 手写数字识别(小白入门) 今早刚刚上了节实验课,关于逻辑回归,所以手有点刺挠就想发个博客,作为刚刚入门的小白,看到代码运行成功就有点小激动,这个实验没啥含金量,所以路过的大牛不要停留,我怕你们吐槽哈哈. 实验结果: 1.数据预处理 其实呢,原理很简单,就是使用多变量逻辑回归,将训练28*28图片的灰度值转换成一维矩阵,这就变成了求784个特征向量1个标签的逻辑回归问题.代码如下: #数据

  • Java实现BP神经网络MNIST手写数字识别的示例详解

    目录 一.神经网络的构建 二.系统架构 服务器 客户端 采用MVC架构 一.神经网络的构建 (1):构建神经网络层次结构 由训练集数据可知,手写输入的数据维数为784维,而对应的输出结果为分别为0-9的10个数字,所以根据训练集的数据可知,在构建的神经网络的输入层的神经元的节点个数为784个,而对应的输出层的神经元个数为10个.隐层可选择单层或多层. (2):确定隐层中的神经元的个数 因为对于隐层的神经元个数的确定目前还没有什么比较完美的解决方案,所以对此经过自己查阅书籍和上网查阅资料,有以下的

  • 利用Java手写阻塞队列的示例代码

    目录 前言 需求分析 阻塞队列实现原理 线程阻塞和唤醒 数组循环使用 代码实现 成员变量定义 构造函数 put函数 offer函数 add函数 take函数 重写toString函数 完整代码 总结 前言 在我们平时编程的时候一个很重要的工具就是容器,在本篇文章当中主要给大家介绍阻塞队列的原理,并且在了解原理之后自己动手实现一个低配版的阻塞队列. 需求分析 在前面的两篇文章ArrayDeque(JDK双端队列)源码深度剖析和深入剖析(JDK)ArrayQueue源码当中我们仔细介绍了队列的原理,

  • 手写Java LockSupport的示例代码

    目录 前言 LockSupport实现原理 自己动手实现自己的LockSupport 实现原理 自己实现LockSupport协议规定 工具 具体实现 完整代码 JVM实现一瞥 总结 前言 在JDK当中给我们提供的各种并发工具当中,比如ReentrantLock等等工具的内部实现,经常会使用到一个工具,这个工具就是LockSupport.LockSupport给我们提供了一个非常强大的功能,它是线程阻塞最基本的元语,他可以将一个线程阻塞也可以将一个线程唤醒,因此经常在并发的场景下进行使用. Lo

  • C语言实现手写红黑树的示例代码

    目录 前沿 红黑树代码 测试 前沿 写C的红黑树前建议先看我博客这篇文章Java-红黑树 主要看原理 红黑树代码 #ifndef STUDY_RBTREE_H #define STUDY_RBTREE_H #include "charkvlinked.h" typedef int boolean;//定义一个布尔类型 #define TRUE 1 #define FALSE 0 enum COL{RED=0,BLACK=1}; typedef struct rBNode { char

随机推荐