R语言ComplexHeatmap绘制复杂热图heatmap

目录
  • 一 载入R包 数据
    • 1.1 载入ComplexHeatmap包,数据
    • 1.2 绘制最简单的热图
  • 二 常见“表型”注释
    • 读入注释文件
    • 2.1 添加注释,且设置颜色
  • 三 添加“块”注释
    • 3.1 k-means指定K个数
    • 3.2 先验知识知道样本分为几个簇
    • 3.3 根据富集结果添加行注释
  • 四 目标基因分析
    • 4.1 标签展示目标基因
    • 4.2 绘制目标基因热图

ComplexHeatmap|绘制单个热图介绍了单个热图绘制的内容

一 载入R包 数据

1.1 载入ComplexHeatmap包,数据

为更贴近生信使用场景,直接使用内置的基因表达数据

library(ComplexHeatmap)
expr = readRDS(paste0(system.file(package = "ComplexHeatmap"), "/extdata/gene_expression.rds"))
#查看数据
str(expr)
expr[1:4,c(1:4,25:27)]

拿到一个新数据后,除了检查[1:4,1:4]外,也许还需要看看最后几列,另外还需要观察列名称的规律。

去除最后几列,或者只选取列名字包含cell的(TCGA数据处理中也会经常遇到)

mat = as.matrix(expr[, grep("cell", colnames(expr))])

1.2 绘制最简单的热图

Heatmap(mat)

二 常见“表型”注释

文献中经常见到的就是在热图的top 或者 bottom位置添加样本的变异信息,临床信息等的注释,本节介绍如何实现以及常见的设置。

读入注释文件

anno <- read.csv("anno.csv",header = T) #非真实数据,随便设置
head(anno)    sample stage age#1 s1_cell01     1  56#2 s2_cell02     2  43#3 s3_cell03     2  63#4 s4_cell01     3  23#5 s5_cell02     1   8#6 s6_cell03     3   3

2.1 添加注释,且设置颜色

2.1.1 颜色设置

1) 连续变量:指定色系,根据变量范围设置颜色范围

col_fun2 <- colorRamp2(
  c(0, 50, 100),  #根据值的范围设置
  c("#ff7f00", "white", "#1f78b4")
)

2)分类变量:直接指定颜色编码

#stage = c("1" = "red", "2" = "green", "3" = "blue" , "4" = "orange") #分类

2.1.2 添加注释

使用HeatmapAnnotation函数进行注释,添加待注释的内容

ha &lt;- HeatmapAnnotation(
  age = anno$age,
  stage = anno$stage,
  col = list(
    age = col_fun2 , #连续
    stage = c("1" = "red", "2" = "green", "3" = "blue" , "4" = "orange") #分类
  )
)

1)注释位置

#指定注释位置 ,示例为top_annotation,此外可选 bottom_annotation ,right_annotation ,left_annotation

Heatmap(
  mat,
  top_annotation = ha
)

热图上面注释样本的临床等信息,实现!

2) 指定多个注释位置

当需要注释的内容较多时候,可以选择在不同的位置。需要预先根据待注释的位置进行指定

column_ha <- HeatmapAnnotation(
  bar1 = anno_barplot(runif(24))
)
row_ha <- rowAnnotation(
  bar2 = expr$chr
)
Heatmap(
  mat,
  show_row_names = F ,
  #cluster_rows = F ,
  top_annotation = ha ,
  bottom_annotation = column_ha, #对应的注释
  right_annotation = row_ha
)

其他常用调整的函数

#cluster_rows/columns :是否进行聚类

#show_column/row_dend :是否显示聚类树

#column/row_dend_side :聚类图绘制的位置

#column_dend_height/row_dend_widht :聚类树的高度 和 宽度

三 添加“块”注释

常见的是根据聚类(kmeans等)或者 先验知识 分为几个簇,然后对簇进行注释。

3.1 k-means指定K个数

1)样本设置分为4组,基因分为3组,同时设置每个“簇”的颜色和标签

set.seed(1234)
Heatmap(mat,
        top_annotation = HeatmapAnnotation(foo = anno_block(gp = gpar(fill = 1:4),
                                                            labels = c("group1", "group2", "group3", "group4"),
                                                            labels_gp = gpar(col = "white", fontsize = 10))),
        column_km = 4, # 列分为4个k
        left_annotation = rowAnnotation(foo = anno_block(gp = gpar(fill = 2:4),
                                                         labels = c("group1", "group2", "group3"),
                                                         labels_gp = gpar(col = "white", fontsize = 10))),
        row_km = 3, #
        show_row_names = F
)

2)设置 text的颜色

Heatmap(mat,
        top_annotation = HeatmapAnnotation(foo = anno_block(gp = gpar(fill = 1:4),
                                                            labels = c("group1", "group2", "group3", "group4"),
                                                            labels_gp = gpar(col = "white", fontsize = 10))),
        column_km = 4,
        left_annotation = rowAnnotation(foo = anno_block(gp = gpar(fill = 2:4),
                                                         labels = c("group1", "group2", "group3"),
                                                         labels_gp = gpar(col = "white", fontsize = 10))),
        row_km = 3,
        show_row_names = F ,
        row_title_gp = gpar(
          col =  rainbow(5)[2:4],
          font = 1:3
        ),
        row_names_gp = gpar(
          col =  rainbow(5)[2:4],
          fontsize = 10:12
        ),
        column_title_gp = gpar(
          fill = rainbow(5)[1:4],
          alpha = 0.5
        ),
        column_names_gp = gpar(
          col = rainbow(5)[1:4]
        )
        )

关于颜色可选#rainbow,heat.colors,terrain.colors,topo.colors,cm.colors

3.2 先验知识知道样本分为几个簇

指定样本添加列注释,假设mat中的24个样本,已知是分别为10个,10个 和4个的三组 。

实际应用中可以根据 年龄段,性别,临床分析,预后评分等指标进行的分组。

split =  c( rep(c("A","B"),10) , rep("C",4) )
ha = HeatmapAnnotation(foo = anno_block(gp = gpar(fill = 2:6), labels = c("AA","BB","CC") ))
col_fun = colorRamp2(c(0, 5, 10, 20), c("white", "cornflowerblue", "yellow", "red"))

使用column_split 函数即可按照指定拆分

Heatmap(mat,
        name = "mat_cluster",
        column_split = split,
        top_annotation = ha,
        cluster_rows = T,
        cluster_columns =  F,
        #rect_gp = gpar(col="white"),  #添加白色格子线
        column_title = NULL)

3.3 根据富集结果添加行注释

文献中经常见到 一些基因富集的通路作为 行注释的图,怎么实现呢?

1)自定义通路结果(也可以是其他想展示的内容)

group <- list(
  A = "Cell cycle",
  B = "Mismatch repair",
  C = "DNA replication"
)

2)添加空白注释

ha = rowAnnotation(
  foo = anno_empty(
    border = FALSE,
    # 计算空白注释的宽度
    width = max_text_width(unlist(group)) + unit(4, "mm"))
)

3)通过向量拆分对应的行和列

Heatmap(mat, name = "mat",
        #cluster_rows = T,
        show_row_names = F,
        right_annotation = ha,
        row_split = c( rep(c("A","B"),30) , rep("C",95) ) ,
        column_split = rep(c("C", "D"), 12))

4)添加注释块 以及 注释文本

for(i in 1:3) {
  decorate_annotation(
    "foo",
    # 选择热图块
    slice = i, {
      # 添加颜色框
      grid.rect(
        x = 0,
        width = unit(2, "mm"),
        gp = gpar(
          fill = rainbow(3)[i],
          col = NA
        ),
        just = "left"
      )
      # 绘制文本
      grid.text(
        group[[i]],
        x = unit(4, "mm"),
        gp = gpar(
          col = rainbow(3)[i]
        ),
        just = "left")
    })
}

需要注意的是 这里需要对应好,各位有更好的方法希望不吝告知。

四 目标基因分析

4.1 标签展示目标基因

使用anno_mark() 函数展示目标基因,至少需要两个参数,通过at 提供原始数据矩阵的索引,labels 为相应的文本标记。

1)读取待展示的基因名称,也可以是geneList的向量

name &lt;- read.table('name.txt', header = T, check.names = FALSE)
head(name)
#    gene#1  gene3#2 gene53#3  gene6#4 gene78#5  gene7#6  gene9

2)获取目标基因对应的矩阵位置;

genelist &lt;- name$gene
index &lt;- which(rownames(mat) %in% genelist)
#得到对应的文本标签;
labs &lt;- rownames(mat)[index]

3)使用labels_gp调整字体大小;

lab2 = rowAnnotation(foo = anno_mark(at = index,
                                     labels = labs,
                                     labels_gp = gpar(fontsize = 8),
                                     lines_gp = gpar()))

标签展示目标基因

Heatmap(mat, name = "mat",
        cluster_rows = T,
        right_annotation = lab2,
        row_names_side = "right",
        show_row_names = F,
        row_names_gp = gpar(fontsize = 4))

4.2 绘制目标基因热图

大部分热图存在基因太多的情况,重点展示目的基因 。

heatmap4 <- Heatmap(
  mat, name = "expression"
)
heatmap

4.2.1 在总图中提取出来目标基因的热图,颜色与大图一致

提取目的基因所在的位置进行绘制

heatmaph4[c(1,5,6,8,9,80,144,74),]

这种方式是在总的热图中直接提取目的基因的部分,热图的颜色与总的热图一致。

4.2.2 提取基因数据重新绘制热图

labs2 &lt;- c("gene1",  "gene5",  "gene6",  "gene8",  "gene9",  "gene80" ,"gene144", "gene74")
mat2 &lt;- as.data.frame(mat) %&gt;%
  rownames_to_column("gene") %&gt;%
  filter( gene %in% labs2  ) %&gt;%
  column_to_rownames("gene")
Heatmap(mat2)

注意区别

参考资料:

https://jokergoo.github.io/ComplexHeatmap-reference/book/a-single-heatmap.html

注释及基因文件均为随便设置的,可根据数据情况自行更改

以上就是R语言ComplexHeatmap绘制复杂热图heatmap的详细内容,更多关于R语言ComplexHeatmap热图的资料请关注我们其它相关文章!

(0)

相关推荐

  • R语言两组变量特征相关关系热图绘制画法

    目录 准备数据 简单热图 只对列进行聚类 将相关系数显示在图上 在图上加上显著性标记 准备数据 两组变量的数据可以像下面这样处理,分别保存在两个csv文件中. > # 导入数据及数据预处理 > setwd("D:/weixin/") > rows <- read.csv("rows.csv") > cols <- read.csv("cols.csv") > str(rows) 'data.frame':

  • R语言数据可视化绘图Lollipop chart棒棒糖图

    目录 Step1.绘图数据的准备 Step2.绘图数据的读取 Step3.绘图所需package的调用 Step4.因子水平排序 Step5.绘图 今天给大家分享的是Lollipop chart(棒棒糖图)的画法.棒棒糖图的用途跟条形图的用法类似,只是看起来更加美观一些,图表形式更加丰富(数据不够.拿图来凑,啥也不能阻止我优秀 ). 为了跟之前画的柱状图更好的比较,今天画图使用了相同的数据. 作图思路:棒棒糖图实际上是在散点图的基础上增加了辅助线. 不过在作图过程中还是遇到了和之前一样的问题,数

  • R语言corrplot相关热图分析美化示例及详细图解

    目录 介绍 1.加载包 2.加载数据 3.绘图 4.个性化设置聚类方法 5.个性化添加矩阵 6.颜色设置 介绍 R corrplot包 提供了一个在相关矩阵上的可视化探索工具,该工具支持自动变量重新排序,以帮助检测变量之间的隐藏模式. corrplot 非常易于使用,并在可视化方法.图形布局.颜色.图例.文本标签等方面提供了丰富的绘图选项.它还提供 p 值和置信区间,以帮助用户确定相关性的统计显著性. corrplot()有大约50个参数,但最常见的参数只有几个.在大多数场景中,我们可以得到一个

  • ComplexHeatmap绘制单个热图

    目录 前言 一 载入数据,R包 1.1 载入ComplexHeatmap包 1.2 载入数据 1.3 绘制最简单的热图 二 热图修饰 2.1 颜色 1)连续型变量 2)分类型变量 2.2 标题 1)设置行,列和图例的标题 2)设置标题的位置,颜色,字体,大小 3)设置标题的背景 2.3 聚类 A:一般设置 B:距离方法 C:聚类方法 D:聚类树的渲染 2.4 设置行列顺序 前言 ComplexHeatmap可以绘制很复杂的热图,能满足日常以及文章所需,本次先简单的介绍单个热图绘制的内容. 单个热

  • R语言数据可视化绘图bar chart条形图实现示例

    时光飞逝,岁月如梭,转眼又是一年过去了,本小仙怎么还是一事无成呢! 转念一想,这种事也不是一次两次了,再多一个又何妨,哈哈! 回归正题,今天就给大家介绍下直方图(histogram)的“好兄弟”——条形图(bar chart).假设小仙同学现在要帮一家书店用图形展示2018年最受大家欢迎的书目,数据如下图. 条形图画出来还挺好看,可是跟小仙想象中的可不一样.明明我的数据是按照销量从高到低排列的,为什么画出来却是按照字母顺序排列的呢? 使用了对因子进行排序的函数reorder()之后,就变成了下图

  • R语言绘图数据可视化Ridgeline plot山脊图画法

    目录 Step1. 绘图数据的准备 Step2. 绘图数据的读取 Step3. 绘图所需package的安装.调用 Step4. 绘图 调整透明度 更改顺序 更改线条形状 今天给大家介绍一下Ridgeline plot(山脊图)的画法. 作图数据如下: Step1. 绘图数据的准备 首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式. Step2. 绘图数据的读取 data<-read.csv("your file path", heade

  • R语言ComplexHeatmap绘制复杂热图heatmap

    目录 一 载入R包 数据 1.1 载入ComplexHeatmap包,数据 1.2 绘制最简单的热图 二 常见“表型”注释 读入注释文件 2.1 添加注释,且设置颜色 三 添加“块”注释 3.1 k-means指定K个数 3.2 先验知识知道样本分为几个簇 3.3 根据富集结果添加行注释 四 目标基因分析 4.1 标签展示目标基因 4.2 绘制目标基因热图 ComplexHeatmap|绘制单个热图介绍了单个热图绘制的内容 一 载入R包 数据 1.1 载入ComplexHeatmap包,数据 为

  • R语言实现漂亮的ROC图效果

    目录 1.读取数据 2.AUC和CI的计算 3.利用ggplot2绘图 4.合并多个ROC曲线结果 pROC是一个专门用来计算和绘制ROC曲线的R包,目前已被CRAN收录,因此安装也非常简单,同时该包也兼容ggplot2函数绘图,本次就教大家怎么用pROC来快速画出ROC图.在医学领域主要用于判断某种因素对于某种疾病的诊断是否有诊断价值.什么是ROC曲线和AUC,以及如何去看ROC曲线的结果,可以这样总结:ROC曲线呢,其实就是每个对应的cutoff值都有一个对应的真阳性率(纵坐标)和假阳性率(

  • R语言开发之输出折线图的操作

    线形图是通过在多个点之间绘制线段来连接一系列点所形成的图形,这些点按其坐标(通常是x坐标)的值排序,并且它通常用于识别数据趋势. 在R中的通过使用plot()函数来创建线形图,语法如下: plot(v,type,col,xlab,ylab) 参数描述如下: v - 是包含数值的向量. type - 取值"p"表示仅绘制点,"l"表示仅绘制线条,"o"表示仅绘制点和线. xlab - 是x轴的标签. ylab - 是y轴的标签. main - 是图

  • R语言-t分布正态分布分位数图的实例

    R是用于统计分析.绘图的语言和操作环境. R是属于GNU系统的一个自由.免费.源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具. 它是一套由数据操作.计算和图形展示功能整合而成的套件. 包括:有效的数据存储和处理功能,一套完整的数组(特别是矩阵)计算操作符,拥有完整体系的数据分析工具,为数据分析和显示提供的强大图形功能,一套(源自S语言)完善.简单.有效的编程语言(包括条件.循环.自定义函数.输入输出功能). 如何用RStudio做分位数图呢? #分位数图,画t分布密度带p值 x=se

  • R语言 实现将两张图放在同一张画布

    我就废话不多说了,大家还是直接看代码吧~ ts1<-ts(test_data$tot_num,frequency = 365,start=c(2017,11,21)) plot(ts1,col='blue',lty='dotted',ylim=c(50,550)) par(new=TRUE) ts2<-ts(test_data$pre_result,frequency = 365,start=c(2017,11,21)) plot(ts2,col='red',ylim=c(50,550)) 好

  • R语言编程学习绘制动态图实现示例

    在讨论级数时,可能需要比对前 n n n项和的变化情况,而随着 n n n的递增,通过动态图来反映这种变化会更加直观,而通过R语言绘制动态图也算是一门不那么初级的技术,所以在此添加一节,补充一下R语言的绘图知识. 绘图需要用到ggplot2,为多张图加上时间轴则需要用到gganimate,为了让这些动态图片被渲染,需要用到av.此外,ggplot2绘图需要输入的数据格式为tibble. install.packages("ggplot2") install.packages("

  • R语言学习VennDiagram包绘制韦恩图示例

    目录 引言 一 需要安装和导入的包 二 使用函数及参数 三 知道各个数据集的个数以及重叠(交叉)的个数 2.1 两个已知数据集的韦恩图 2.2 三个已知数据集的韦恩图 四 根据数据集合绘制韦恩图 4.1 四个数据集合 4.2 五个数据集合 引言 本版块会持续分享一些常用的结果展示的图形. 在得到数据之后,我们经常会用到维恩图来展示各个数据集之间的重叠关系.本文简单的介绍R语言中的VennDiagram包绘制数据集的维恩图. 一 需要安装和导入的包 install.packages("VennDi

  • R语言箱线图创建实例讲解

    箱线图是数据集中的数据分布良好的度量. 它将数据集分成三个四分位数. 此图表表示数据集中的最小值,最大值,中值,第一四分位数和第三四分位数. 它还可用于通过绘制每个数据集的箱线图来比较数据集之间的数据分布. R语言中使用boxplot()函数来创建箱线图. 语法 在R语言中创建箱线图的基本语法是 - boxplot(x, data, notch, varwidth, names, main) 以下是所使用的参数的描述 - x是向量或公式. 数据是数据帧. notch是逻辑值. 设置为TRUE以绘

  • R语言学习ggplot2绘制统计图形包全面详解

    目录 一.序 二.ggplot2是什么? 三.ggplot2能画出什么样的图? 四.组装机器 五.设计图纸 六.机器的零件 1. 零件--散点图 1) 变换颜色 2) 拟合曲线 3) 变换大小 4) 修改透明度 5) 分层 6) 改中文 2. 零件--直方图与条形图 1) 直方图 2) 润色 3) 条形图 3. 零件--饼图 4. 零件--箱线图 5. 零件--小提琴图 6. 零件打磨 7. 超级变变变 8. 其他常用零件 七.实践出真知 八.学习资源 九.参考资料 一.序 作为一枚统计专业的学

随机推荐