TensorFlow和Numpy矩阵操作中axis理解及axis=-1的解释

目录
  • 1. axis的基本使用
  • 2. 对axis的理解
  • 总结
  • 参考资料

1. axis的基本使用

axis常常用在numpy和tensorflow中用到,作为对矩阵(张量)进行操作时需要指定的重要参数之一。设定axis=-1,0,1...,用来指定执行操作的数据如何划分。

一句话解释:设axis=i,则沿着第i个下标变化的方向进行操作![1]

简单例子就不举了,其他博客有很多,这里举一个稍微复杂一点的三维矩阵的例子:

设embeddings是一个shape=[3,4,5]的矩阵,如下:

embeddings =    [[[-0.30166972  0.25741747 -0.07442257  0.24321035 -0.3538919 ]
                  [-0.22572032  0.1288028  -0.4686908  -0.07217035  0.05287632]
                  [ 0.15845934  0.07064888  0.00922218  0.2841002  -0.24992025]
                  [ 0.43347922 -0.43738696 -0.08176881  0.34185413 -0.2826353 ]]

                 [[-0.08590135  0.06792518 -0.07807922 -0.28746927 -0.10613027]
                  [ 0.07476929  0.132256   -0.0926154   0.39621904  0.2497718 ]
                  [-0.15389556  0.0867373   0.19403657 -0.11003655  0.317669  ]
                  [ 0.3949038  -0.17275128  0.34710506 -0.02576578 -0.17427891]]

                 [[-0.27703786  0.02631402  0.22129896 -0.07714707  0.41439041]
                  [-0.08512023  0.19059369 -0.13418713 -0.12881753 -0.26143318]
                  [-0.333749    0.27034065  0.45429572 -0.46164128 -0.3955955 ]
                  [ 0.24430516 -0.3841647   0.37126407 -0.463441   -0.1441828 ]]]

对embeddings矩阵执行下面操作:

a = tf.math.argmax(embeddings, axis=-1)   # tf.math.argmax=tf.argmax,用来返回最大数值对应的index
b = tf.math.argmax(embeddings, axis=1)
c = tf.math.argmax(embeddings, axis=0)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
   
    print(embeddings.eval())   # a.eval 在打印时,等同于 sess.run(a)
    print(a.eval())
    print(b.eval())
    print(c.eval())

得到的结果是:

[[1 1 3 0]
 [1 3 4 0]
 [4 1 2 2]]   # axis=-1, shape=[3,4]
 
[[3 0 2 3 1]
 [3 1 3 1 2]
 [3 2 2 0 0]]   # axis=1, shape=[3,5]
 
[[1 0 2 0 2]
 [1 2 1 1 1]
 [0 2 2 0 1]
 [0 1 2 0 2]]   # axis=0, shape=[4,5]

看懂了吗?参考上面的一句话解释,再结合矩阵的下标表示理解一下。

刚刚的矩阵写成下标表示就是:

embeddings = [[[a000,a001,a002,a003,a004],
               [a010,a011,a012,a013,a014],
               [a020,a021,a022,a023,a024],
               [a030,a031,a032,a033,a034]]

              [[a100,a101,a102,a103,a104],
               [a110,a111,a112,a113,a114],
               [a120,a121,a122,a123,a124],
               [a130,a131,a132,a133,a134]]

              [[a200,a201,a202,a203,a204],
               [a210,a211,a212,a213,a214],
               [a220,a221,a222,a223,a224],
               [a230,a231,a232,a233,a234]]

以axis=0为例,则沿着第0个下标(最左边的下标)变化的方向进行操作,也就是将除了第0个下标外,其他两个下标都相同的部分分成一组,然后再进行操作。具体分组如下(省略了一些组):

从上图可以看出,每3个数分成一组,所以现在总共是分了4*5个组(所以最终返回的结果也是一个shape=[4,5]的矩阵),对每个组都执行一次 reduce_max操作,将每个组的三个数中数值最大的数的index返回构成矩阵即可。

这里需要特别说明一下axis=-1的操作,可能对python不熟悉的人会不理解这里的-1是哪个维度。在pyhton中,-1代表倒数第一个,也就是说,假如你的矩阵shape=[3,4,5],那么对这个矩阵来说,axis=-1,其实也就等于axis=2。因为这是个三维矩阵,所以axis可能的取值为0,1,2,所以最后一个就是2。你可以自己试试看两个取值结果是否相同。

2. 对axis的理解

通过上面的例子,你可能已经发现了,axis是将矩阵进行分组,然后再操作。而分组则意味着会降维。

以刚刚的例子,原始矩阵的shape=[3,4,5],取axis=0再进行操作后,得到的矩阵shape=[4,5]。同样的,取axis=1再进行操作后,得到的矩阵shape=[3,5]。取axis=-1(axis=2)再操作后,shape=[3,4]。掌握这一点,能有利于你在神经网络中的变换或是数据操作中明确矩阵变换前后的形状,从而加快对模型的理解。

总结

到此这篇关于TensorFlow和Numpy矩阵操作中axis理解及axis=-1解释的文章就介绍到这了,更多相关矩阵操作中axis=-1的解释内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

参考资料

[1] 这个一句话解释来源于:https://www.jb51.net/article/242077.htm

(0)

相关推荐

  • Python之NumPy(axis=0 与axis=1)区分详解

    python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列?考虑以下代码: >>>df = pd.DataFrame([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]], \ columns=["col1", "col2", "col3", "col4"]) >>>df col1 col2 col3 col4 0 1 1 1 1

  • numpy库与pandas库axis=0,axis= 1轴的用法详解

    对数据进行操作时,经常需要在横轴方向或者数轴方向对数据进行操作,这时需要设定参数axis的值: axis = 0 代表对横轴操作,也就是第0轴: axis = 1 代表对纵轴操作,也就是第1轴: numpy库中横轴.纵轴 axis 参数实例详解: In [1]: import numpy as np #生成一个3行4列的数组 In [2]: a = np.arange(12).reshape(3,4) In [3]: a Out[3]: array([[ 0, 1, 2, 3], [ 4, 5,

  • 详解Numpy扩充矩阵维度(np.expand_dims, np.newaxis)和删除维度(np.squeeze)的方法

    在操作矩阵的时候,不同的接口对于矩阵的输入维度要求不同,输入可能为1-D,2-D,3-D等等.下面介绍一下使用Numpy进行矩阵维度变更的相关方法.主要包括以下几种: 1.np.newaxis扩充矩阵维度 2.np.expand_dims扩充矩阵维度 3.np.squeeze删除矩阵中维度大小为1的维度 np.newaxis,np.expand_dims扩充矩阵维度: import numpy as np x = np.arange(8).reshape(2, 4) print(x.shape)

  • NumPy中的维度Axis详解

    浅谈NumPy中的维度Axis NumPy中的维度是一个很重要的概念,很多函数的参数都需要给定维度Axis,如何直观的理解维度呢?我们首先以二维数组为例进行说明,然后推广到多维数组. (有人将ndim属性叫维度,将axis叫轴,我还是习惯将axis称之为维度,axis=0称为第一个维度) 二维数组的列子 下面是一个二维数组的列子: In [1]: import numpy as np In [2]: x = np.random.randint(0, 9, (2, 3)) In [3]: x Ou

  • TensorFlow和Numpy矩阵操作中axis理解及axis=-1的解释

    目录 1. axis的基本使用 2. 对axis的理解 总结 参考资料 1. axis的基本使用 axis常常用在numpy和tensorflow中用到,作为对矩阵(张量)进行操作时需要指定的重要参数之一.设定axis=-1,0,1...,用来指定执行操作的数据如何划分. 一句话解释:设axis=i,则沿着第i个下标变化的方向进行操作![1] 简单例子就不举了,其他博客有很多,这里举一个稍微复杂一点的三维矩阵的例子: 设embeddings是一个shape=[3,4,5]的矩阵,如下: embe

  • Tensorflow矩阵运算实例(矩阵相乘,点乘,行/列累加)

    Tensorflow二维.三维.四维矩阵运算(矩阵相乘,点乘,行/列累加) 1. 矩阵相乘 根据矩阵相乘的匹配原则,左乘矩阵的列数要等于右乘矩阵的行数. 在多维(三维.四维)矩阵的相乘中,需要最后两维满足匹配原则. 可以将多维矩阵理解成:(矩阵排列,矩阵),即后两维为矩阵,前面的维度为矩阵的排列. 比如对于(2,2,4)来说,视为2个(2,4)矩阵. 对于(2,2,2,4)来说,视为2*2个(2,4)矩阵. import tensorflow as tf a_2d = tf.constant([

  • python numpy 矩阵堆叠实例

    在实际操作中,遇到了矩阵堆叠的操作,本来想着自己写一个函数,后来想,应该有库函数,于是一阵找寻 import numpy as np a = np.array([1,2,3]) b = np.array([4,5,6]) np.stack((a,b)) #默认行堆叠 输出: array([[1, 2, 3], [4, 5, 6]]) np.vstack((a, b)) 输出: array([[1, 2, 3], [4, 5, 6]]) np.hstack((a, b)) 输出: array([1

  • Python编程给numpy矩阵添加一列方法示例

    首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵 import numpy as np a = np.array([[1,2,3],[4,5,6],[7,8,9]]) b = np.ones(3) c = np.array([[1,2,3,1],[4,5,6,1],[7,8,9,1]]) PRint(a) print(b) print(c) [[1 2 3] [4 5 6] [7 8 9]] [ 1. 1. 1.] [[1 2 3 1] [4

  • Tensorflow的常用矩阵生成方式

    我就废话不多说了,直接上代码吧! #全0和全1矩阵 v1 = tf.Variable(tf.zeros([3,3,3]), name="v1") v2 = tf.Variable(tf.ones([10,5]), name="v2") #填充单值矩阵 v3 = tf.Variable(tf.fill([2,3], 9)) #常量矩阵 v4_1 = tf.constant([1, 2, 3, 4, 5, 6, 7]) v4_2 = tf.constant(-1.0,

  • Tensorflow tf.dynamic_partition矩阵拆分示例(Python3)

    先给出一个样例看看 import tensorflow as tf raw = tf.constant([1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1]) ''' 拆成 [1,2] [3,4] [5,6] [6,5] [4,3] [2,1] ''' result_1 = tf.dynamic_partition(tf.reshape(raw, [6,2]),[0, 1, 2, 3, 4, 5], 6) ''' 拆成 [1, 2, 3, 4, 5, 6] [6, 5, 4,

  • 探秘TensorFlow 和 NumPy 的 Broadcasting 机制

    在使用Tensorflow的过程中,我们经常遇到数组形状不同的情况,但有时候发现二者还能进行加减乘除的运算,在这背后,其实是Tensorflow的broadcast即广播机制帮了大忙.而Tensorflow中的广播机制其实是效仿的numpy中的广播机制.本篇,我们就来一同研究下numpy和Tensorflow中的广播机制. 1.numpy广播原理 1.1 数组和标量计算时的广播 标量和数组合并时就会发生简单的广播,标量会和数组中的每一个元素进行计算. 举个例子: arr = np.arange(

  • 在TensorFlow中实现矩阵维度扩展

    一般TensorFlow中扩展维度可以使用tf.expand_dims().近来发现另一种可以直接运用取数据操作符[]就能扩展维度的方法. 用法很简单,在要扩展的维度上加上tf.newaxis就行了. foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] print(foo[:, tf.newaxis, :].eva

  • 如何对numpy 矩阵进行通道间求均值

    目录 对numpy 矩阵进行通道间求均值 numpy求平均值的两种方法不一样 对numpy 矩阵进行通道间求均值 给定一个3x2x2得矩阵,得到一个2x2的矩阵,其中对应元素是通道间的均值 import numpy as np a = np.array([ [[1, 2], [3, 4]], [[5,6], [7,8]], [[1, 2], [3, 4]] ]) print(a.shape) # (3, 2, 2) print(np.mean(a, axis=0)) """

  • python中numpy矩阵的零填充的示例代码

    目录 需求: 一.再new一个更大的所需要的矩阵大小 二.pad函数 其他想法 需求: 对于图像处理中的一些过程,我需要对读取的numpy矩阵进行size的扩充,比如原本是(4,6)的矩阵,现在需要上下左右各扩充3行,且为了不影响数值计算,都用0填充. 比如下图,我有一个4x5大小的全1矩阵,但是现在我要在四周都加上3行的0来扩充大小,最后扩充完还要对原区域进行操作. 方法: 想到了几种方法,记录一下. 一.再new一个更大的所需要的矩阵大小 a = np.ones((4,5)) #假设原矩阵是

随机推荐