使用Keras预训练模型ResNet50进行图像分类方式

Keras提供了一些用ImageNet训练过的模型:Xception,VGG16,VGG19,ResNet50,InceptionV3。在使用这些模型的时候,有一个参数include_top表示是否包含模型顶部的全连接层,如果包含,则可以将图像分为ImageNet中的1000类,如果不包含,则可以利用这些参数来做一些定制的事情。

在运行时自动下载有可能会失败,需要去网站中手动下载,放在“~/.keras/models/”中,使用WinPython则在“settings/.keras/models/”中。

修正:表示当前是训练模式还是测试模式的参数K.learning_phase()文中表述和使用有误,在该函数说明中可以看到:

The learning phase flag is a bool tensor (0 = test, 1 = train),所以0是测试模式,1是训练模式,部分网络结构下两者有差别。

这里使用ResNet50预训练模型,对Caltech101数据集进行图像分类。只有CPU,运行较慢,但是在训练集固定的情况下,较慢的过程只需要运行一次。

该预训练模型的中文文档介绍在http://keras-cn.readthedocs.io/en/latest/other/application/#resnet50

我使用的版本:

1.Ubuntu 16.04.3

2.Python 2.7

3.Keras 2.0.8

4.Tensoflow 1.3.0

5.Numpy 1.13.1

6.python-opencv 2.4.9.1+dfsg-1.5ubuntu1

7.h5py 2.7.0

从文件夹中提取图像数据的方式:

函数:

def eachFile(filepath):     #将目录内的文件名放入列表中
 pathDir = os.listdir(filepath)
 out = []
 for allDir in pathDir:
  child = allDir.decode('gbk') # .decode('gbk')是解决中文显示乱码问题
  out.append(child)
 return out

def get_data(data_name,train_left=0.0,train_right=0.7,train_all=0.7,resize=True,data_format=None,t=''): #从文件夹中获取图像数据
 file_name = os.path.join(pic_dir_out,data_name+t+'_'+str(train_left)+'_'+str(train_right)+'_'+str(Width)+"X"+str(Height)+".h5")
 print file_name
 if os.path.exists(file_name):   #判断之前是否有存到文件中
  f = h5py.File(file_name,'r')
  if t=='train':
   X_train = f['X_train'][:]
   y_train = f['y_train'][:]
   f.close()
   return (X_train, y_train)
  elif t=='test':
   X_test = f['X_test'][:]
   y_test = f['y_test'][:]
   f.close()
   return (X_test, y_test)
  else:
   return
 data_format = conv_utils.normalize_data_format(data_format)
 pic_dir_set = eachFile(pic_dir_data)
 X_train = []
 y_train = []
 X_test = []
 y_test = []
 label = 0
 for pic_dir in pic_dir_set:
  print pic_dir_data+pic_dir
  if not os.path.isdir(os.path.join(pic_dir_data,pic_dir)):
   continue
  pic_set = eachFile(os.path.join(pic_dir_data,pic_dir))
  pic_index = 0
  train_count = int(len(pic_set)*train_all)
  train_l = int(len(pic_set)*train_left)
  train_r = int(len(pic_set)*train_right)
  for pic_name in pic_set:
   if not os.path.isfile(os.path.join(pic_dir_data,pic_dir,pic_name)):
    continue
   img = cv2.imread(os.path.join(pic_dir_data,pic_dir,pic_name))
   if img is None:
    continue
   if (resize):
    img = cv2.resize(img,(Width,Height))
    img = img.reshape(-1,Width,Height,3)
   if (pic_index < train_count):
    if t=='train':
     if (pic_index >= train_l and pic_index < train_r):
      X_train.append(img)
      y_train.append(label)
   else:
    if t=='test':
     X_test.append(img)
     y_test.append(label)
   pic_index += 1
  if len(pic_set) <> 0:
   label += 1

 f = h5py.File(file_name,'w')
 if t=='train':
  X_train = np.concatenate(X_train,axis=0)
  y_train = np.array(y_train)
  f.create_dataset('X_train', data = X_train)
  f.create_dataset('y_train', data = y_train)
  f.close()
  return (X_train, y_train)
 elif t=='test':
  X_test = np.concatenate(X_test,axis=0)
  y_test = np.array(y_test)
  f.create_dataset('X_test', data = X_test)
  f.create_dataset('y_test', data = y_test)
  f.close()
  return (X_test, y_test)
 else:
  return

调用:

 global Width, Height, pic_dir_out, pic_dir_data
 Width = 224
 Height = 224
 num_classes = 102    #Caltech101为102 cifar10为10
 pic_dir_out = '/home/ccuux3/pic_cnn/pic_out/'
 pic_dir_data = '/home/ccuux3/pic_cnn/pic_dataset/Caltech101/'
 sub_dir = '224_resnet50/'
 if not os.path.isdir(os.path.join(pic_dir_out,sub_dir)):
  os.mkdir(os.path.join(pic_dir_out,sub_dir))
 pic_dir_mine = os.path.join(pic_dir_out,sub_dir)
 (X_train, y_train) = get_data("Caltech101_color_data_",0.0,0.7,data_format='channels_last',t='train')
 y_train = np_utils.to_categorical(y_train, num_classes)

载入预训练模型ResNet50,并将训练图像经过网络运算得到数据,不包含顶部的全连接层,得到的结果存成文件,以后可以直接调用(由于我内存不够,所以拆分了一下):

 input_tensor = Input(shape=(224, 224, 3))
 base_model = ResNet50(input_tensor=input_tensor,include_top=False,weights='imagenet')
 #base_model = ResNet50(input_tensor=input_tensor,include_top=False,weights=None)
 get_resnet50_output = K.function([base_model.layers[0].input, K.learning_phase()],
        [base_model.layers[-1].output])

 file_name = os.path.join(pic_dir_mine,'resnet50_train_output'+'.h5')
 if os.path.exists(file_name):
  f = h5py.File(file_name,'r')
  resnet50_train_output = f['resnet50_train_output'][:]
  f.close()
 else:
  resnet50_train_output = []
  delta = 10
  for i in range(0,len(X_train),delta):
   print i
   one_resnet50_train_output = get_resnet50_output([X_train[i:i+delta], 0])[0]
   resnet50_train_output.append(one_resnet50_train_output)
  resnet50_train_output = np.concatenate(resnet50_train_output,axis=0)
  f = h5py.File(file_name,'w')
  f.create_dataset('resnet50_train_output', data = resnet50_train_output)
  f.close()

将ResNet50网络产生的结果用于图像分类:

 input_tensor = Input(shape=(1, 1, 2048))
 x = Flatten()(input_tensor)
 x = Dense(1024, activation='relu')(x)
 predictions = Dense(num_classes, activation='softmax')(x)
 model = Model(inputs=input_tensor, outputs=predictions)
 model.compile(optimizer=Adam(), loss='categorical_crossentropy',metrics=['accuracy'])

训练图像数据集:

 print('\nTraining ------------') #从文件中提取参数,训练后存在新的文件中
 cm = 0        #修改这个参数可以多次训练
 cm_str = '' if cm==0 else str(cm)
 cm2_str = '' if (cm+1)==0 else str(cm+1)
 if cm >= 1:
  model.load_weights(os.path.join(pic_dir_mine,'cnn_model_Caltech101_resnet50_'+cm_str+'.h5'))
 model.fit(resnet50_train_output, y_train, epochs=10, batch_size=128,)
 model.save_weights(os.path.join(pic_dir_mine,'cnn_model_Caltech101_resnet50_'+cm2_str+'.h5'))

测试图像数据集:

 (X_test, y_test) = get_data("Caltech101_color_data_",0.0,0.7,data_format='channels_last',t='test')
 y_test = np_utils.to_categorical(y_test, num_classes)

 file_name = os.path.join(pic_dir_mine,'resnet50_test_output'+'.h5')
 if os.path.exists(file_name):
  f = h5py.File(file_name,'r')
  resnet50_test_output = f['resnet50_test_output'][:]
  f.close()
 else:
  resnet50_test_output = []
  delta = 10
  for i in range(0,len(X_test),delta):
   print i
   one_resnet50_test_output = get_resnet50_output([X_test[i:i+delta], 0])[0]
   resnet50_test_output.append(one_resnet50_test_output)
  resnet50_test_output = np.concatenate(resnet50_test_output,axis=0)
  f = h5py.File(file_name,'w')
  f.create_dataset('resnet50_test_output', data = resnet50_test_output)
  f.close()
 print('\nTesting ------------')  #对测试集进行评估
 class_name_list = get_name_list(pic_dir_data) #获取top-N的每类的准确率
 pred = model.predict(resnet50_test_output, batch_size=32)

输出测试集各类别top-5的准确率:

 N = 5
 pred_list = []
 for row in pred:
  pred_list.append(row.argsort()[-N:][::-1]) #获取最大的N个值的下标
 pred_array = np.array(pred_list)
 test_arg = np.argmax(y_test,axis=1)
 class_count = [0 for _ in xrange(num_classes)]
 class_acc = [0 for _ in xrange(num_classes)]
 for i in xrange(len(test_arg)):
  class_count[test_arg[i]] += 1
  if test_arg[i] in pred_array[i]:
   class_acc[test_arg[i]] += 1
 print('top-'+str(N)+' all acc:',str(sum(class_acc))+'/'+str(len(test_arg)),sum(class_acc)/float(len(test_arg)))
 for i in xrange(num_classes):
  print (i, class_name_list[i], 'acc: '+str(class_acc[i])+'/'+str(class_count[i]))

完整代码:

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import h5py
import os

from keras.utils import np_utils, conv_utils
from keras.models import Model
from keras.layers import Flatten, Dense, Input
from keras.optimizers import Adam
from keras.applications.resnet50 import ResNet50
from keras import backend as K

def get_name_list(filepath):    #获取各个类别的名字
 pathDir = os.listdir(filepath)
 out = []
 for allDir in pathDir:
  if os.path.isdir(os.path.join(filepath,allDir)):
   child = allDir.decode('gbk') # .decode('gbk')是解决中文显示乱码问题
   out.append(child)
 return out

def eachFile(filepath):     #将目录内的文件名放入列表中
 pathDir = os.listdir(filepath)
 out = []
 for allDir in pathDir:
  child = allDir.decode('gbk') # .decode('gbk')是解决中文显示乱码问题
  out.append(child)
 return out

def get_data(data_name,train_left=0.0,train_right=0.7,train_all=0.7,resize=True,data_format=None,t=''): #从文件夹中获取图像数据
 file_name = os.path.join(pic_dir_out,data_name+t+'_'+str(train_left)+'_'+str(train_right)+'_'+str(Width)+"X"+str(Height)+".h5")
 print file_name
 if os.path.exists(file_name):   #判断之前是否有存到文件中
  f = h5py.File(file_name,'r')
  if t=='train':
   X_train = f['X_train'][:]
   y_train = f['y_train'][:]
   f.close()
   return (X_train, y_train)
  elif t=='test':
   X_test = f['X_test'][:]
   y_test = f['y_test'][:]
   f.close()
   return (X_test, y_test)
  else:
   return
 data_format = conv_utils.normalize_data_format(data_format)
 pic_dir_set = eachFile(pic_dir_data)
 X_train = []
 y_train = []
 X_test = []
 y_test = []
 label = 0
 for pic_dir in pic_dir_set:
  print pic_dir_data+pic_dir
  if not os.path.isdir(os.path.join(pic_dir_data,pic_dir)):
   continue
  pic_set = eachFile(os.path.join(pic_dir_data,pic_dir))
  pic_index = 0
  train_count = int(len(pic_set)*train_all)
  train_l = int(len(pic_set)*train_left)
  train_r = int(len(pic_set)*train_right)
  for pic_name in pic_set:
   if not os.path.isfile(os.path.join(pic_dir_data,pic_dir,pic_name)):
    continue
   img = cv2.imread(os.path.join(pic_dir_data,pic_dir,pic_name))
   if img is None:
    continue
   if (resize):
    img = cv2.resize(img,(Width,Height))
    img = img.reshape(-1,Width,Height,3)
   if (pic_index < train_count):
    if t=='train':
     if (pic_index >= train_l and pic_index < train_r):
      X_train.append(img)
      y_train.append(label)
   else:
    if t=='test':
     X_test.append(img)
     y_test.append(label)
   pic_index += 1
  if len(pic_set) <> 0:
   label += 1

 f = h5py.File(file_name,'w')
 if t=='train':
  X_train = np.concatenate(X_train,axis=0)
  y_train = np.array(y_train)
  f.create_dataset('X_train', data = X_train)
  f.create_dataset('y_train', data = y_train)
  f.close()
  return (X_train, y_train)
 elif t=='test':
  X_test = np.concatenate(X_test,axis=0)
  y_test = np.array(y_test)
  f.create_dataset('X_test', data = X_test)
  f.create_dataset('y_test', data = y_test)
  f.close()
  return (X_test, y_test)
 else:
  return

def main():
 global Width, Height, pic_dir_out, pic_dir_data
 Width = 224
 Height = 224
 num_classes = 102    #Caltech101为102 cifar10为10
 pic_dir_out = '/home/ccuux3/pic_cnn/pic_out/'
 pic_dir_data = '/home/ccuux3/pic_cnn/pic_dataset/Caltech101/'
 sub_dir = '224_resnet50/'
 if not os.path.isdir(os.path.join(pic_dir_out,sub_dir)):
  os.mkdir(os.path.join(pic_dir_out,sub_dir))
 pic_dir_mine = os.path.join(pic_dir_out,sub_dir)
 (X_train, y_train) = get_data("Caltech101_color_data_",0.0,0.7,data_format='channels_last',t='train')
 y_train = np_utils.to_categorical(y_train, num_classes)

 input_tensor = Input(shape=(224, 224, 3))
 base_model = ResNet50(input_tensor=input_tensor,include_top=False,weights='imagenet')
 #base_model = ResNet50(input_tensor=input_tensor,include_top=False,weights=None)
 get_resnet50_output = K.function([base_model.layers[0].input, K.learning_phase()],
        [base_model.layers[-1].output])

 file_name = os.path.join(pic_dir_mine,'resnet50_train_output'+'.h5')
 if os.path.exists(file_name):
  f = h5py.File(file_name,'r')
  resnet50_train_output = f['resnet50_train_output'][:]
  f.close()
 else:
  resnet50_train_output = []
  delta = 10
  for i in range(0,len(X_train),delta):
   print i
   one_resnet50_train_output = get_resnet50_output([X_train[i:i+delta], 0])[0]
   resnet50_train_output.append(one_resnet50_train_output)
  resnet50_train_output = np.concatenate(resnet50_train_output,axis=0)
  f = h5py.File(file_name,'w')
  f.create_dataset('resnet50_train_output', data = resnet50_train_output)
  f.close()

 input_tensor = Input(shape=(1, 1, 2048))
 x = Flatten()(input_tensor)
 x = Dense(1024, activation='relu')(x)
 predictions = Dense(num_classes, activation='softmax')(x)
 model = Model(inputs=input_tensor, outputs=predictions)
 model.compile(optimizer=Adam(), loss='categorical_crossentropy',metrics=['accuracy'])

 print('\nTraining ------------') #从文件中提取参数,训练后存在新的文件中
 cm = 0        #修改这个参数可以多次训练
 cm_str = '' if cm==0 else str(cm)
 cm2_str = '' if (cm+1)==0 else str(cm+1)
 if cm >= 1:
  model.load_weights(os.path.join(pic_dir_mine,'cnn_model_Caltech101_resnet50_'+cm_str+'.h5'))
 model.fit(resnet50_train_output, y_train, epochs=10, batch_size=128,)
 model.save_weights(os.path.join(pic_dir_mine,'cnn_model_Caltech101_resnet50_'+cm2_str+'.h5'))

 (X_test, y_test) = get_data("Caltech101_color_data_",0.0,0.7,data_format='channels_last',t='test')
 y_test = np_utils.to_categorical(y_test, num_classes)

 file_name = os.path.join(pic_dir_mine,'resnet50_test_output'+'.h5')
 if os.path.exists(file_name):
  f = h5py.File(file_name,'r')
  resnet50_test_output = f['resnet50_test_output'][:]
  f.close()
 else:
  resnet50_test_output = []
  delta = 10
  for i in range(0,len(X_test),delta):
   print i
   one_resnet50_test_output = get_resnet50_output([X_test[i:i+delta], 0])[0]
   resnet50_test_output.append(one_resnet50_test_output)
  resnet50_test_output = np.concatenate(resnet50_test_output,axis=0)
  f = h5py.File(file_name,'w')
  f.create_dataset('resnet50_test_output', data = resnet50_test_output)
  f.close()
 print('\nTesting ------------')  #对测试集进行评估
 class_name_list = get_name_list(pic_dir_data) #获取top-N的每类的准确率
 pred = model.predict(resnet50_test_output, batch_size=32)
 f = h5py.File(os.path.join(pic_dir_mine,'pred_'+cm2_str+'.h5'),'w')
 f.create_dataset('pred', data = pred)
 f.close()

 N = 1
 pred_list = []
 for row in pred:
  pred_list.append(row.argsort()[-N:][::-1]) #获取最大的N个值的下标
 pred_array = np.array(pred_list)
 test_arg = np.argmax(y_test,axis=1)
 class_count = [0 for _ in xrange(num_classes)]
 class_acc = [0 for _ in xrange(num_classes)]
 for i in xrange(len(test_arg)):
  class_count[test_arg[i]] += 1
  if test_arg[i] in pred_array[i]:
   class_acc[test_arg[i]] += 1
 print('top-'+str(N)+' all acc:',str(sum(class_acc))+'/'+str(len(test_arg)),sum(class_acc)/float(len(test_arg)))
 for i in xrange(num_classes):
  print (i, class_name_list[i], 'acc: '+str(class_acc[i])+'/'+str(class_count[i]))

 print('----------------------------------------------------')
 N = 5
 pred_list = []
 for row in pred:
  pred_list.append(row.argsort()[-N:][::-1]) #获取最大的N个值的下标
 pred_array = np.array(pred_list)
 test_arg = np.argmax(y_test,axis=1)
 class_count = [0 for _ in xrange(num_classes)]
 class_acc = [0 for _ in xrange(num_classes)]
 for i in xrange(len(test_arg)):
  class_count[test_arg[i]] += 1
  if test_arg[i] in pred_array[i]:
   class_acc[test_arg[i]] += 1
 print('top-'+str(N)+' all acc:',str(sum(class_acc))+'/'+str(len(test_arg)),sum(class_acc)/float(len(test_arg)))
 for i in xrange(num_classes):
  print (i, class_name_list[i], 'acc: '+str(class_acc[i])+'/'+str(class_count[i]))

if __name__ == '__main__':
 main()

运行结果:

Using TensorFlow backend.
/home/ccuux3/pic_cnn/pic_out/Caltech101_color_data_train_0.0_0.7_224X224.h5

Training ------------
Epoch 1/10
6353/6353 [==============================] - 5s - loss: 1.1269 - acc: 0.7494
Epoch 2/10
6353/6353 [==============================] - 4s - loss: 0.1603 - acc: 0.9536
Epoch 3/10
6353/6353 [==============================] - 4s - loss: 0.0580 - acc: 0.9855
Epoch 4/10
6353/6353 [==============================] - 4s - loss: 0.0312 - acc: 0.9931
Epoch 5/10
6353/6353 [==============================] - 4s - loss: 0.0182 - acc: 0.9956
Epoch 6/10
6353/6353 [==============================] - 4s - loss: 0.0111 - acc: 0.9976
Epoch 7/10
6353/6353 [==============================] - 4s - loss: 0.0090 - acc: 0.9981
Epoch 8/10
6353/6353 [==============================] - 4s - loss: 0.0082 - acc: 0.9987
Epoch 9/10
6353/6353 [==============================] - 4s - loss: 0.0069 - acc: 0.9994
Epoch 10/10
6353/6353 [==============================] - 4s - loss: 0.0087 - acc: 0.9987
/home/ccuux3/pic_cnn/pic_out/Caltech101_color_data_test_0.0_0.7_224X224.h5

Testing ------------
('top-1 all acc:', '2597/2792', 0.9301575931232091)
(0, u'62.mayfly', 'acc: 10/12')
(1, u'66.Motorbikes', 'acc: 240/240')
(2, u'68.octopus', 'acc: 7/11')
(3, u'94.umbrella', 'acc: 21/23')
(4, u'90.strawberry', 'acc: 10/11')
(5, u'86.stapler', 'acc: 13/14')
(6, u'83.sea_horse', 'acc: 15/18')
(7, u'72.pigeon', 'acc: 13/14')
(8, u'89.stop_sign', 'acc: 19/20')
(9, u'4.BACKGROUND_Google', 'acc: 125/141')
(10, u'22.cougar_face', 'acc: 18/21')
(11, u'81.scissors', 'acc: 9/12')
(12, u'100.wrench', 'acc: 8/12')
(13, u'57.Leopards', 'acc: 60/60')
(14, u'46.hawksbill', 'acc: 29/30')
(15, u'30.dolphin', 'acc: 19/20')
(16, u'9.bonsai', 'acc: 39/39')
(17, u'35.euphonium', 'acc: 18/20')
(18, u'44.gramophone', 'acc: 16/16')
(19, u'74.platypus', 'acc: 7/11')
(20, u'14.camera', 'acc: 15/15')
(21, u'55.lamp', 'acc: 15/19')
(22, u'38.Faces_easy', 'acc: 129/131')
(23, u'54.ketch', 'acc: 28/35')
(24, u'33.elephant', 'acc: 18/20')
(25, u'3.ant', 'acc: 8/13')
(26, u'49.helicopter', 'acc: 26/27')
(27, u'36.ewer', 'acc: 26/26')
(28, u'78.rooster', 'acc: 14/15')
(29, u'70.pagoda', 'acc: 15/15')
(30, u'58.llama', 'acc: 20/24')
(31, u'5.barrel', 'acc: 15/15')
(32, u'101.yin_yang', 'acc: 18/18')
(33, u'18.cellphone', 'acc: 18/18')
(34, u'59.lobster', 'acc: 7/13')
(35, u'17.ceiling_fan', 'acc: 14/15')
(36, u'16.car_side', 'acc: 37/37')
(37, u'50.ibis', 'acc: 24/24')
(38, u'76.revolver', 'acc: 23/25')
(39, u'84.snoopy', 'acc: 7/11')
(40, u'87.starfish', 'acc: 26/26')
(41, u'12.buddha', 'acc: 24/26')
(42, u'52.joshua_tree', 'acc: 20/20')
(43, u'43.gerenuk', 'acc: 10/11')
(44, u'65.minaret', 'acc: 23/23')
(45, u'91.sunflower', 'acc: 26/26')
(46, u'56.laptop', 'acc: 24/25')
(47, u'77.rhino', 'acc: 17/18')
(48, u'1.airplanes', 'acc: 239/240')
(49, u'88.stegosaurus', 'acc: 16/18')
(50, u'23.crab', 'acc: 17/22')
(51, u'8.binocular', 'acc: 8/10')
(52, u'31.dragonfly', 'acc: 18/21')
(53, u'6.bass', 'acc: 15/17')
(54, u'95.watch', 'acc: 72/72')
(55, u'0.accordion', 'acc: 17/17')
(56, u'98.wild_cat', 'acc: 9/11')
(57, u'67.nautilus', 'acc: 16/17')
(58, u'40.flamingo', 'acc: 20/21')
(59, u'92.tick', 'acc: 12/15')
(60, u'47.headphone', 'acc: 12/13')
(61, u'24.crayfish', 'acc: 15/21')
(62, u'97.wheelchair', 'acc: 17/18')
(63, u'27.cup', 'acc: 15/18')
(64, u'25.crocodile', 'acc: 14/15')
(65, u'2.anchor', 'acc: 7/13')
(66, u'19.chair', 'acc: 17/19')
(67, u'39.ferry', 'acc: 21/21')
(68, u'60.lotus', 'acc: 16/20')
(69, u'13.butterfly', 'acc: 26/28')
(70, u'34.emu', 'acc: 14/16')
(71, u'64.metronome', 'acc: 10/10')
(72, u'82.scorpion', 'acc: 24/26')
(73, u'7.beaver', 'acc: 12/14')
(74, u'48.hedgehog', 'acc: 16/17')
(75, u'37.Faces', 'acc: 131/131')
(76, u'45.grand_piano', 'acc: 30/30')
(77, u'79.saxophone', 'acc: 11/12')
(78, u'26.crocodile_head', 'acc: 9/16')
(79, u'80.schooner', 'acc: 15/19')
(80, u'93.trilobite', 'acc: 26/26')
(81, u'28.dalmatian', 'acc: 21/21')
(82, u'10.brain', 'acc: 28/30')
(83, u'61.mandolin', 'acc: 10/13')
(84, u'11.brontosaurus', 'acc: 11/13')
(85, u'63.menorah', 'acc: 25/27')
(86, u'85.soccer_ball', 'acc: 20/20')
(87, u'51.inline_skate', 'acc: 9/10')
(88, u'71.panda', 'acc: 11/12')
(89, u'53.kangaroo', 'acc: 24/26')
(90, u'99.windsor_chair', 'acc: 16/17')
(91, u'42.garfield', 'acc: 11/11')
(92, u'29.dollar_bill', 'acc: 16/16')
(93, u'20.chandelier', 'acc: 30/33')
(94, u'96.water_lilly', 'acc: 6/12')
(95, u'41.flamingo_head', 'acc: 13/14')
(96, u'73.pizza', 'acc: 13/16')
(97, u'21.cougar_body', 'acc: 15/15')
(98, u'75.pyramid', 'acc: 16/18')
(99, u'69.okapi', 'acc: 12/12')
(100, u'15.cannon', 'acc: 11/13')
(101, u'32.electric_guitar', 'acc: 19/23')
----------------------------------------------------
('top-5 all acc:', '2759/2792', 0.9881805157593123)
(0, u'62.mayfly', 'acc: 12/12')
(1, u'66.Motorbikes', 'acc: 240/240')
(2, u'68.octopus', 'acc: 11/11')
(3, u'94.umbrella', 'acc: 23/23')
(4, u'90.strawberry', 'acc: 11/11')
(5, u'86.stapler', 'acc: 14/14')
(6, u'83.sea_horse', 'acc: 16/18')
(7, u'72.pigeon', 'acc: 14/14')
(8, u'89.stop_sign', 'acc: 20/20')
(9, u'4.BACKGROUND_Google', 'acc: 141/141')
(10, u'22.cougar_face', 'acc: 19/21')
(11, u'81.scissors', 'acc: 11/12')
(12, u'100.wrench', 'acc: 10/12')
(13, u'57.Leopards', 'acc: 60/60')
(14, u'46.hawksbill', 'acc: 30/30')
(15, u'30.dolphin', 'acc: 20/20')
(16, u'9.bonsai', 'acc: 39/39')
(17, u'35.euphonium', 'acc: 20/20')
(18, u'44.gramophone', 'acc: 16/16')
(19, u'74.platypus', 'acc: 9/11')
(20, u'14.camera', 'acc: 15/15')
(21, u'55.lamp', 'acc: 18/19')
(22, u'38.Faces_easy', 'acc: 131/131')
(23, u'54.ketch', 'acc: 34/35')
(24, u'33.elephant', 'acc: 20/20')
(25, u'3.ant', 'acc: 10/13')
(26, u'49.helicopter', 'acc: 27/27')
(27, u'36.ewer', 'acc: 26/26')
(28, u'78.rooster', 'acc: 15/15')
(29, u'70.pagoda', 'acc: 15/15')
(30, u'58.llama', 'acc: 24/24')
(31, u'5.barrel', 'acc: 15/15')
(32, u'101.yin_yang', 'acc: 18/18')
(33, u'18.cellphone', 'acc: 18/18')
(34, u'59.lobster', 'acc: 13/13')
(35, u'17.ceiling_fan', 'acc: 14/15')
(36, u'16.car_side', 'acc: 37/37')
(37, u'50.ibis', 'acc: 24/24')
(38, u'76.revolver', 'acc: 25/25')
(39, u'84.snoopy', 'acc: 10/11')
(40, u'87.starfish', 'acc: 26/26')
(41, u'12.buddha', 'acc: 25/26')
(42, u'52.joshua_tree', 'acc: 20/20')
(43, u'43.gerenuk', 'acc: 11/11')
(44, u'65.minaret', 'acc: 23/23')
(45, u'91.sunflower', 'acc: 26/26')
(46, u'56.laptop', 'acc: 25/25')
(47, u'77.rhino', 'acc: 18/18')
(48, u'1.airplanes', 'acc: 240/240')
(49, u'88.stegosaurus', 'acc: 18/18')
(50, u'23.crab', 'acc: 22/22')
(51, u'8.binocular', 'acc: 10/10')
(52, u'31.dragonfly', 'acc: 20/21')
(53, u'6.bass', 'acc: 16/17')
(54, u'95.watch', 'acc: 72/72')
(55, u'0.accordion', 'acc: 17/17')
(56, u'98.wild_cat', 'acc: 11/11')
(57, u'67.nautilus', 'acc: 17/17')
(58, u'40.flamingo', 'acc: 21/21')
(59, u'92.tick', 'acc: 13/15')
(60, u'47.headphone', 'acc: 12/13')
(61, u'24.crayfish', 'acc: 21/21')
(62, u'97.wheelchair', 'acc: 18/18')
(63, u'27.cup', 'acc: 16/18')
(64, u'25.crocodile', 'acc: 15/15')
(65, u'2.anchor', 'acc: 12/13')
(66, u'19.chair', 'acc: 19/19')
(67, u'39.ferry', 'acc: 21/21')
(68, u'60.lotus', 'acc: 19/20')
(69, u'13.butterfly', 'acc: 27/28')
(70, u'34.emu', 'acc: 16/16')
(71, u'64.metronome', 'acc: 10/10')
(72, u'82.scorpion', 'acc: 26/26')
(73, u'7.beaver', 'acc: 14/14')
(74, u'48.hedgehog', 'acc: 17/17')
(75, u'37.Faces', 'acc: 131/131')
(76, u'45.grand_piano', 'acc: 30/30')
(77, u'79.saxophone', 'acc: 12/12')
(78, u'26.crocodile_head', 'acc: 14/16')
(79, u'80.schooner', 'acc: 19/19')
(80, u'93.trilobite', 'acc: 26/26')
(81, u'28.dalmatian', 'acc: 21/21')
(82, u'10.brain', 'acc: 30/30')
(83, u'61.mandolin', 'acc: 13/13')
(84, u'11.brontosaurus', 'acc: 13/13')
(85, u'63.menorah', 'acc: 25/27')
(86, u'85.soccer_ball', 'acc: 20/20')
(87, u'51.inline_skate', 'acc: 10/10')
(88, u'71.panda', 'acc: 12/12')
(89, u'53.kangaroo', 'acc: 26/26')
(90, u'99.windsor_chair', 'acc: 17/17')
(91, u'42.garfield', 'acc: 11/11')
(92, u'29.dollar_bill', 'acc: 16/16')
(93, u'20.chandelier', 'acc: 32/33')
(94, u'96.water_lilly', 'acc: 12/12')
(95, u'41.flamingo_head', 'acc: 14/14')
(96, u'73.pizza', 'acc: 16/16')
(97, u'21.cougar_body', 'acc: 15/15')
(98, u'75.pyramid', 'acc: 18/18')
(99, u'69.okapi', 'acc: 12/12')
(100, u'15.cannon', 'acc: 12/13')
(101, u'32.electric_guitar', 'acc: 23/23')

以上这篇使用Keras预训练模型ResNet50进行图像分类方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 浅谈keras保存模型中的save()和save_weights()区别

    今天做了一个关于keras保存模型的实验,希望有助于大家了解keras保存模型的区别. 我们知道keras的模型一般保存为后缀名为h5的文件,比如final_model.h5.同样是h5文件用save()和save_weight()保存效果是不一样的. 我们用宇宙最通用的数据集MNIST来做这个实验,首先设计一个两层全连接网络: inputs = Input(shape=(784, )) x = Dense(64, activation='relu')(inputs) x = Dense(64,

  • Keras使用ImageNet上预训练的模型方式

    我就废话不多说了,大家还是直接看代码吧! import keras import numpy as np from keras.applications import vgg16, inception_v3, resnet50, mobilenet #Load the VGG model vgg_model = vgg16.VGG16(weights='imagenet') #Load the Inception_V3 model inception_model = inception_v3.I

  • keras 如何保存最佳的训练模型

    1.只保存最佳的训练模型 2.保存有所有有提升的模型 3.加载模型 4.参数说明 只保存最佳的训练模型 from keras.callbacks import ModelCheckpoint filepath='weights.best.hdf5' # 有一次提升, 则覆盖一次. checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1,save_best_only=True,mode='max',period=2)

  • 解决在keras中使用model.save()函数保存模型失败的问题

    我使用的是anaconda安装的环境,其中有一个是h5py,自动安装的是2.7.0的版本,这个版本会导致保存模型时python奔溃. conda install h5py==2.8.0 将h5py更新一个版本即可解决这个问题. 补充知识:Django安装提示错误 使用sudo pip install ......的时候出现下面一段代码: The directory '/Users/XX/Library/Caches/pip' or its parent directory is not owne

  • 使用Keras预训练模型ResNet50进行图像分类方式

    Keras提供了一些用ImageNet训练过的模型:Xception,VGG16,VGG19,ResNet50,InceptionV3.在使用这些模型的时候,有一个参数include_top表示是否包含模型顶部的全连接层,如果包含,则可以将图像分为ImageNet中的1000类,如果不包含,则可以利用这些参数来做一些定制的事情. 在运行时自动下载有可能会失败,需要去网站中手动下载,放在"~/.keras/models/"中,使用WinPython则在"settings/.ke

  • PyTorch加载预训练模型实例(pretrained)

    使用预训练模型的代码如下: # 加载预训练模型 resNet50 = models.resnet50(pretrained=True) ResNet50 = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=2) # 读取参数 pretrained_dict = resNet50.state_dict() model_dict = ResNet50.state_dict() # 将pretained_dict里不属于model_dict的键剔除掉 pret

  • 浅谈keras使用预训练模型vgg16分类,损失和准确度不变

    问题keras使用预训练模型vgg16分类,损失和准确度不变. 细节:使用keras训练一个两类数据,正负比例1:3,在vgg16后添加了几个全链接并初始化了.并且对所有层都允许训练. 但是准确度一直是0.75. 数据预先处理已经检查过格式正确 再将模型中relu改成sigmoid就正常了. 数据处理程序 import os import pickle import numpy as np import DataFile import SelectiveSearch import Generat

  • tensorflow获取预训练模型某层参数并赋值到当前网络指定层方式

    已经有了一个预训练的模型,我需要从其中取出某一层,把该层的weights和biases赋值到新的网络结构中,可以使用tensorflow中的pywrap_tensorflow(用来读取预训练模型的参数值)结合Session.assign()进行操作. 这种需求即预训练模型可能为单分支网络,当前网络为多分支,我需要把单分支A复用到到多个分支去(B,C,D). 先导入对应的工具包 from tensorflow.python import pywrap_tensorflow 接下来的操作在一个tf.

  • 基于Keras 循环训练模型跑数据时内存泄漏的解决方式

    在使用完模型之后,添加这两行代码即可清空之前model占用的内存: import tensorflow as tf from keras import backend as K K.clear_session() tf.reset_default_graph() 补充知识:keras 多个模型测试阶段速度越来越慢问题的解决方法 问题描述 在实际应用或比赛中,经常会用到交叉验证(10倍或5倍)来提高泛化能力,这样在预测时需要加载多个模型.常用的方法为 mods = [] from keras.ut

  • Keras 实现加载预训练模型并冻结网络的层

    在解决一个任务时,我会选择加载预训练模型并逐步fine-tune.比如,分类任务中,优异的深度学习网络有很多. ResNet, VGG, Xception等等... 并且这些模型参数已经在imagenet数据集中训练的很好了,可以直接拿过来用. 根据自己的任务,训练一下最后的分类层即可得到比较好的结果.此时,就需要"冻结"预训练模型的所有层,即这些层的权重永不会更新. 以Xception为例: 加载预训练模型: from tensorflow.python.keras.applicat

  • MxNet预训练模型到Pytorch模型的转换方式

    预训练模型在不同深度学习框架中的转换是一种常见的任务.今天刚好DPN预训练模型转换问题,顺手将这个过程记录一下. 核心转换函数如下所示: def convert_from_mxnet(model, checkpoint_prefix, debug=False): _, mxnet_weights, mxnet_aux = mxnet.model.load_checkpoint(checkpoint_prefix, 0) remapped_state = {} for state_key in m

  • Keras预训练的ImageNet模型实现分类操作

    本文主要介绍通过预训练的ImageNet模型实现图像分类,主要使用到的网络结构有:VGG16.InceptionV3.ResNet50.MobileNet. 代码: import keras import numpy as np from keras.applications import vgg16, inception_v3, resnet50, mobilenet # 加载模型 vgg_model = vgg16.VGG16(weights='imagenet') inception_mo

  • Pytorch加载部分预训练模型的参数实例

    前言 自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了.对于深度学习的初学者,Pytorch值得推荐.今天主要主要谈谈Pytorch是如何加载预训练模型的参数以及代码的实现过程. 直接加载预选脸模型 如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直

  • pytorch 更改预训练模型网络结构的方法

    一个继承nn.module的model它包含一个叫做children()的函数,这个函数可以用来提取出model每一层的网络结构,在此基础上进行修改即可,修改方法如下(去除后两层): resnet_layer = nn.Sequential(*list(model.children())[:-2]) 那么,接下来就可以构建我们的网络了: class Net(nn.Module): def __init__(self , model): super(Net, self).__init__() #取

随机推荐