Python手写回归树的实现
目录
- 回归树
- 创建子节点
- 预测
- 计算误差
- 概括的步骤
- 更深入的模型
在本篇文章中,我们将介绍回归树及其基本数学原理,并从头开始使用Python实现一个完整的回归树模型。
为了简单起见这里将使用递归来创建树节点,虽然递归不是一个完美的实现,但是对于解释原理他是最直观的。
首先导入库
import pandas as pd import numpy as np import matplotlib.pyplot as plt
首先需要创建训练数据,我们的数据将具有独立变量(x)和一个相关的变量(y),并使用numpy在相关值中添加高斯噪声,可以用数学表达为
这里的
相关推荐
-
带你学习Python如何实现回归树模型
所谓的回归树模型其实就是用树形模型来解决回归问题,树模型当中最经典的自然还是决策树模型,它也是几乎所有树模型的基础.虽然基本结构都是使用决策树,但是根据预测方法的不同也可以分为两种.第一种,树上的叶子节点就对应一个预测值和分类树对应,这一种方法称为回归树.第二种,树上的叶子节点对应一个线性模型,最后的结果由线性模型给出.这一种方法称为模型树. 今天我们先来看看其中的回归树. 回归树模型 CART算法的核心精髓就是我们每次选择特征对数据进行拆分的时候,永远对数据集进行二分.无论是离散特征还是连续性
-
python决策树之CART分类回归树详解
决策树之CART(分类回归树)详解,具体内容如下 1.CART分类回归树简介 CART分类回归树是一种典型的二叉决策树,可以处理连续型变量和离散型变量.如果待预测分类是离散型数据,则CART生成分类决策树:如果待预测分类是连续型数据,则CART生成回归决策树.数据对象的条件属性为离散型或连续型,并不是区别分类树与回归树的标准,例如表1中,数据对象xi的属性A.B为离散型或连续型,并是不区别分类树与回归树的标准. 表1 2.CART分类回归树分裂属性的选择 2.1 CART分类树--待预测
-
Python手写回归树的实现
目录 回归树 创建子节点 预测 计算误差 概括的步骤 更深入的模型 在本篇文章中,我们将介绍回归树及其基本数学原理,并从头开始使用Python实现一个完整的回归树模型. 为了简单起见这里将使用递归来创建树节点,虽然递归不是一个完美的实现,但是对于解释原理他是最直观的. 首先导入库 import pandas as pd import numpy as np import matplotlib.pyplot as plt 首先需要创建训练数据,我们的数据将具有独立变量(x)和一个相关的变量(y),
-
python手写均值滤波
本文实例为大家分享了python手写均值滤波的具体代码,供大家参考,具体内容如下 原理与卷积类似,设置一个n*n的滤波模板,滤波模板内的值累加除以模板的尺寸大小取平均为滤波后的值. 代码如下: import cv2 as cv import numpy as np #均值滤波 def meansBlur(src, ksize): ''' :param src: input image :param ksize:kernel size :return dst: output image ''' d
-
基于Python手写拼音识别
目录 一.算法构造 1.简单介绍一下knn算法 2.Python实现KNN 二.准备数据 1.将图片转换成数组矩阵 三.处理数据:训练集与测试集 1.区分训练集和测试集 2.加载数据 3.建立训练数据 四.测试数据 一.算法构造 1.简单介绍一下knn算法 KNN算法,也叫K最近邻算法.功能是分类.算法逻辑非常简单,说直白点就是:先找到跟你最近的k个邻居(假设k=5),再看你的邻居给哪个类别投票(即邻居的标签),少数服从多数,得票最多的结果就是你的类别. 在这个算法中最关键的三点: k值 :选择
-
python神经网络编程之手写数字识别
写在之前 首先是写在之前的一些建议: 首先是关于这本书,我真的认为他是将神经网络里非常棒的一本书,但你也需要注意,如果你真的想自己动手去实现,那么你一定需要有一定的python基础,并且还需要有一些python数据科学处理能力 然后希望大家在看这边博客的时候对于神经网络已经有一些了解了,知道什么是输入层,什么是输出层,并且明白他们的一些理论,在这篇博客中我们仅仅是展开一下代码: 然后介绍一下本篇博客的环境等: 语言:Python3.8.5 环境:jupyter 库文件: numpy | matp
-
Python实现带GUI界面的手写数字识别
目录 1.效果图 2.数据集 3.关于模型 4.关于GUI设计 5.缺点 6.遗留问题 1.效果图 有点low,轻喷 点击选择图片会优先从当前目录查找 2.数据集 这部分我是对MNIST数据集进行处理保存 对应代码: import tensorflow as tf import matplotlib.pyplot as plt import cv2 from PIL import Image import numpy as np from scipy import misc (x_train_a
-
caffe的python接口之手写数字识别mnist实例
目录 引言 一.数据准备 二.导入caffe库,并设定文件路径 二.生成配置文件 三.生成参数文件solver 四.开始训练模型 五.完成的python文件 引言 深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 视觉层及参数 solver配置文件及参数 一.数据准备 官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片.因此有些
-
如何用Python徒手写线性回归
对于大多数数据科学家而言,线性回归方法是他们进行统计学建模和预测分析任务的起点.这种方法已经存在了 200 多年,并得到了广泛研究,但仍然是一个积极的研究领域.由于良好的可解释性,线性回归在商业数据上的用途十分广泛.当然,在生物数据.工业数据等领域也不乏关于回归分析的应用. 另一方面,Python 已成为数据科学家首选的编程语言,能够应用多种方法利用线性模型拟合大型数据集显得尤为重要. 如果你刚刚迈入机器学习的大门,那么使用 Python 从零开始对整个线性回归算法进行编码是一次很有意义的尝试,
-
Python利用逻辑回归模型解决MNIST手写数字识别问题详解
本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题.分享给大家供大家参考,具体如下: 1.MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几.可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件. %matplotlib inline import tensorflow as tf import tensorflow.examples.tutori
-
Python实战之MNIST手写数字识别详解
目录 数据集介绍 1.数据预处理 2.网络搭建 3.网络配置 关于优化器 关于损失函数 关于指标 4.网络训练与测试 5.绘制loss和accuracy随着epochs的变化图 6.完整代码 数据集介绍 MNIST数据集是机器学习领域中非常经典的一个数据集,由60000个训练样本和10000个测试样本组成,每个样本都是一张28 * 28像素的灰度手写数字图片,且内置于keras.本文采用Tensorflow下Keras(Keras中文文档)神经网络API进行网络搭建. 开始之前,先回忆下机器学习
随机推荐
- Java 对 Properties 文件的操作详解及简单实例
- Powershell展开对象数据结构并以JSON格式输出
- 解决AngualrJS页面刷新导致异常显示问题
- 解析C++中构造函数的默认参数和构造函数的重载
- javamail 发送邮件的实例代码分享
- 浅谈scrapy 的基本命令介绍
- 解读ASP.NET 5 & MVC6系列教程(5):Configuration配置信息管理
- JS简单的图片放大缩小的两种方法
- asp.net清空Cookie的两种方法
- SQL 四种连接-左外连接、右外连接、内连接、全连接详解
- JAVA实现读取txt文件内容的方法
- 使用MySQL的yum源安装MySQL5.7数据库的方法
- vue2.0开发实践总结之入门篇
- Python THREADING模块中的JOIN()方法深入理解
- php array_search() 函数使用
- MFC设置对话框焦点的方法简述
- ASP.NET 图片加水印防盗链实现代码
- jquery拖拽效果完整实例(附demo源码下载)
- jQuery Tab插件 用于在Tab中显示iframe,附源码和详细说明
- 基于jquery实现轮播特效