利用C++实现双链表基本接口示例代码

链表

链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。 相比于线性表顺序结构,链表比较方便插入和删除操作。

本文主要给大家介绍了关于C++实现双链表基本接口的相关内容,分享出来供大家参考学习,话不多说,来一起看看详细的介绍吧。

首先先简单通过图示区分单链表和双链表的结构差异:

单链表的基本接口实现可参考:单链表简单实现

接下来就是双链表的基本接口实现:

#include <iostream>
#include <assert.h>
using namespace std;

typedef int DataType;

struct ListNode
{
 ListNode* _next;
 ListNode* _prev;
 DataType _data;

 ListNode(DataType x)
  :_next(NULL)
  , _prev(NULL)
  , _data(x)
 {}
};

typedef ListNode Node;

class List
{

public:
 List()
  :_head(NULL)
  ,_tail(NULL)
 {}

 List(const List& l)
  :_head(NULL)
  ,_tail(NULL)
 {
  Copy(l);
 }

 void Copy(const List& l)
 {
  Node* cur = l._head;
  while (cur)
  {
   PushBack(cur->_data);
   cur = cur->_next;
  }
 }

 List& operator=(const List& l)
 {
  Destory();
  Copy(l);
  return *this;
 }

 ~List()
 {
  Destory();
 }

 void Destory()
 {
  if (_head)
  {
   Node* cur = _head;
   while (_head)
   {
    cur = _head;
    _head = _head->_next;
    delete cur;
   }
   _head = _tail = NULL;
  }
 }

 void PushBack(DataType x)
 {
  if (_head == NULL)
  {
   Node* tmp = new Node(x);
   tmp->_next = tmp->_prev = NULL;
   _head = _tail = tmp;
  }
  else
  {
   Node* tmp = new Node(x);
   _tail->_next = tmp;
   tmp->_prev = _tail;
   _tail = tmp;
  }
 }

 void PopBack()
 {
  if (_head == NULL)
  {
   return;
  }
  else if (_head->_next == NULL)
  {
   delete _head;
   _head = _tail = NULL;
  }
  else
  {
   Node* tmp = _tail;
   _tail = _tail->_prev;
   _tail->_next = NULL;
   delete tmp;
  }
 }

 void PushFront(DataType x)
 {
  if (_head == NULL)
  {
   _head = _tail = new Node(x);
  }
  else
  {
   Node* tmp = new Node(x);
   tmp->_next = _head;
   _head->_prev = tmp;
   _head = _head->_prev;
  }
 }

 void PopFront()
 {
  if (_head == NULL)
  {
   return;
  }
  else if (_head->_next == NULL)
  {
   delete _head;
   _head = _tail = NULL;
  }
  else
  {
   Node* tmp = _head;
   _head = _head->_next;
   delete tmp;
   _head->_prev = NULL;
  }
 }

 Node* Find(DataType x)
 {
  Node* cur = _head;
  while (cur)
  {
   if (cur->_data == x)
    return cur;
   cur = cur->_next;
  }
  return NULL;
 }

 // 在pos的前面插入x
 void Insert(Node* pos, DataType x)
 {
  assert(pos);
  if ((pos == 0) || (pos->_prev == NULL))
  {
   PushFront(x);
  }
  else
  {
   Node* font = pos->_prev;
   Node* tmp = new Node(x);
   tmp->_prev = font;
   tmp->_next = pos;
   font->_next = tmp;
   pos->_prev = tmp;
  }
 }

 //删除pos位置的元素
 void Erase(Node* pos)
 {
  assert(pos);
  if ((pos == 0) || (pos->_prev == NULL))
  {
   PopFront();
  }
  else if (pos->_next == NULL)
  {
   PopBack();
  }
  else
  {
   Node* font = pos->_prev;
   Node* last = pos->_next;
   font->_next = last;
   last->_prev = font;
   delete pos;
  }
 }

 //逆序整个双链表
 void Reverse()
 {
  Node* cur = _head;
  while (cur)
  {
   swap(cur->_next,cur->_prev);
   cur = cur->_prev;
  }
  swap(_head, _tail);
 }

 void Print()
 {
  Node* cur = _head;
  while (cur)
  {
   cout << cur->_data << "->";
   cur = cur->_next;
  }
  cout << "NULL" << endl;
 }

private:
 Node* _head;
 Node* _tail;
};

注:在一些操作实现时,一定要要考虑清楚各种情况,再进行情况的分类尽量提高代码的复用程度。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对我们的支持

(0)

相关推荐

  • C++ 实现双向链表的实例

    双向链表C++ 的实现 本文是通过C++ 的知识实现数据结构中的双向链表,这里不多说 了,代码注释很清楚, 实现代码: //double LinkList implement with C++ template #include<iostream> using namespace std; /*template<typename Type> class DBListADT { public: virtual void Append(const Type &)=0; virt

  • C++将二叉树转为双向链表及判断两个链表是否相交

    把二叉查找树转变成排序的双向链表 例如: 转换成双向链表 4=6=8=10=12=14=16 struct BSTreeNode { int m_nValue; // value of node BSTreeNode *m_pLeft; // left child of node BSTreeNode *m_pRight; // right child of node }; 首先阐述下二叉排序树: 它首先要是一棵二元树,在这基础上它或者是一棵空树:或者是具有下列性质的二元树: (1)若左子树不空

  • C++ 双链表的基本操作(详解)

    1.概念 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱.所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点.一般我们都构造双向循环链表. 结构图如下所示: 2.基本操作实例 DoubleList.cpp #include "stdafx.h" #include "DoubleList.h" #include <stdio.h> #include <malloc.h>

  • c++双向链表操作示例(创建双向链、双向链表中查找数据、插入数据等)

    双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱.所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点.一般我们都构造双向循环链表. (1)定义双向链表的基本结构 复制代码 代码如下: typedef struct _DOUBLE_LINK_NODE  {      int data;      struct _DOUBLE_LINK_NODE* prev;      struct _DOUBLE_LINK_NODE* nex

  • C/C++ 双链表之逆序的实例详解

    C/C++ 双链表之逆序的实例详解 一.结点结构 双向链表的数据结构定义如下: typedef struct node { ElemType data; struct node *prior struct node *next; }list; 其中,ElemType可以是任意数据类型如int.float或者char等,在算法中,规定其默认为int类型. 二.带头结点 本文描述的是双向链表逆序,链表逆序需要维护3个指针,分别指向前一个节点.当前节点和下一个节点,具体代码如下: list *reve

  • 如何用C++实现双向循环链表

    双向循环链表,即每个节点都拥有一前一后两个指针且头尾互链的链表.各种链表的简单区别如下:单向链表:基本链表:单向循环链表:不同于单向链表以 NULL 判断链表的尾部,单向循环链表的尾部链接到表头,因此当迭代操作到表头前即是尾部:双向链表:比单向链表多出指向前一个节点的指针,但实际上使用双向链表时很少使用不循环的:双向循环链表:相对于单向循环链表,双向循环链表可从头部反向迭代,这在链表长度很大且需要获取.插入或删除靠近链表尾部元素的时候十分高效.单向循环列表只能从表头正向迭代,执行的时间大于从反向

  • 关于双向链表的增删改查和排序的C++实现

    双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱.所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点.一般我们都构造双向循环链表. 由于双向链表可以方便地实现正序和逆序两个方向的插入.查找等功能,在很多算法中经常被使用, 这里用C++构造了一个双向链表,提供了对双向链表的插入.查找.删除节点.排序等功能,其中排序提供了插入排序和冒泡排序两种方式 #include<iostream> using namespace std;

  • C++ 构造双向链表的实现代码

    构造双向链表,不足之处,还望指正!  复制代码 代码如下: // DoubleLinkedList.cpp : 定义控制台应用程序的入口点.//构造双向链表,实现从控制台输入,插入,删除,求大小size等操作#include "stdafx.h"#include <iostream>using namespace std;//定义双向链表的节点template<class T>struct NODE{ NODE<T>* pre; T data; NO

  • C++ 模版双向链表的实现详解

    代码如下所示: 复制代码 代码如下: #include <iostream>template <typename T>class double_linked{    struct node    {        T data;        node* prev;        node* next;        node(T t, node* p, node* n) : data(t), prev(p), next(n) {}    };    node* head;   

  • 深入解析C++的循环链表与双向链表设计的API实现

    循环链表设计与API实现 基本概念 循环链表的定义:将单链表中最后一个数据元素的next指针指向第一个元素 循环链表拥有单链表的所有操作 创建链表 销毁链表 获取链表长度 清空链表 获取第pos个元素操作 插入元素到位置pos 删除位置pos处的元素 新增功能:游标的定义 在循环链表中可以定义一个"当前"指针,这个指针通常称为游标,可以通过这个游标来遍历链表中的所有元素. 循环链表新操作 将游标重置指向链表中的第一个数据元素 CircleListNode* CircleList_Res

随机推荐