基于C++实现的各种内部排序算法汇总

提起排序算法相信大家都不陌生,或许很多人已经把它们记得滚瓜烂熟,甚至随时可以写出来。是的,这些都是最基本的算法。这里就把各种内部排序算法总结归纳了一下,包括插入排序(直接插入排序,折半插入排序,希尔排序)、交换排序(冒泡排序,快速排序)、选择排序(简单选择排序,堆排序)、2-路归并排序。(另:至于堆排序算法,前面已经有一篇文章针对堆排序的算法实现做了详细的描述)

C++实现代码如下:

/*************************************************************************
 > File Name: sort.cpp
 > Author: SongLee
 ************************************************************************/
#include<iostream>
using namespace std;

typedef int ElementType;

/*
 *<<直接插入排序>>
 * 为了实现N个数的排序,将后面N-1个数依次插入到前面已排好的子序列中,
 *假定刚开始第1个数是一个已排好序的子序列。经过N-1趟就能得到一个有序序列。
 *****时间复杂度:最好情况O(n),最坏情况O(n^2),平均情况O(n^2).
 *****空间复杂度:O(1)
 *****稳定性:稳定
 */
void InsertSort(ElementType A[], int n)
{
 int i,j;
 ElementType temp; // 临时变量

 for(i=1; i<n; ++i)
 {
 temp = A[i];
 for(j = i; j>0 && A[j-1]>temp; --j)
 A[j] = A[j-1];
 A[j] = temp;
 }
}

/*
 *<<折半插入排序>>
 * 与直接插入排序不同的是,折半插入排序不是边比较边移动,而是将比较和移
 *动操作分离出来,即先折半查找出元素的待插入位置,然后再统一地移动待插入位
 *置之后的所有元素。不难看出折半插入排序仅仅是减少了比较的次数。
 *****时间复杂度:O(n^2)
 *****空间复杂度:O(1)
 *****稳定性:稳定
 */
void BinaryInsertSort(ElementType A[], int n)
{
 int i, j, low, high, mid;
 ElementType temp;
 for(i=1; i<n; ++i)
 {
 temp = A[i];
 low = 0; high = i-1; // 设置折半查找的范围
 while(low <= high)
 {
 mid = (low+high)/2; // 取中间点
 if(A[mid] > temp)
 high = mid-1;
 else
 low = mid+1;
 }

 for(j=i-1; j>=high+1; --j) // 统一后移
 A[j+1] = A[j];
 A[high+1] = temp; // 插入
 }
}

/*
 *<<希尔排序>>
 * 希尔排序通过比较相距一定间隔的元素,即形如L[i,i+d,i+2d,...i+kd]的序列
 *然后缩小间距,再对各分组序列进行排序。直到只比较相邻元素的最后一趟排序为
 *止,即最后的间距为1。希尔排序有时也叫做*缩小增量排序*
 *****时间复杂度:依赖于增量序列的选择,但最坏情况才为O(N^2)
 *****空间复杂度:O(1)
 *****稳定性:不稳定
 */
void ShellSort(ElementType A[], int n)
{
 int i, j, dk; // dk是增量
 ElementType temp;

 for(dk=n/2; dk>0; dk/=2) // 增量变化
 {
 for(i=dk; i<n; ++i) // 每个分组序列进行直接插入排序
 {
 temp = A[i];
 for(j=i-dk; j>=0 && A[j]>temp; j-=dk)
 A[j+dk] = A[j]; // 后移
 A[j+dk] = temp;
 }
 }
}

/*
 *<<冒泡排序>>
 * 冒泡排序的基本思想是从后往前(或从前往后)两两比较相邻元素的值,若为
 *逆序,则交换它们,直到序列比较完。我们称它为一趟冒泡。每一趟冒泡都会将一
 *个元素放置到其最终位置上。
 *****时间复杂度:最好情况O(n),最坏情况O(n^2),平均情况O(n^2)
 *****空间复杂度:O(1)
 *****稳定性:稳定
 */
void BubbleSort(ElementType A[], int n)
{
 for(int i=0; i<n-1; ++i)
 {
 bool flag = false; // 表示本次冒泡是否发生交换的标志
 for(int j=n-1; j>i; --j) // 从后往前
 {
 if(A[j-1] > A[j])
 {
 flag = true;
 // 交换
 A[j-1] = A[j-1]^A[j];
 A[j] = A[j-1]^A[j];
 A[j-1] = A[j-1]^A[j];
 }
 }

 if(flag == false)
 return;
 }
}

/*
 *<<快速排序>>
 * 快速排序是对冒泡排序的一种改进。其基本思想是基于分治法:在待排序表L[n]
 *中任取一个元素pivot作为基准,通过一趟排序将序列划分为两部分L[1...K-1]和
 *L[k+1...n],是的L[1...k-1]中的所有元素都小于pivot,而L[k+1...n]中所有元素
 *都大于或等于pivot。则pivot放在了其最终位置L(k)上。然后,分别递归地对两个子
 *序列重复上述过程,直至每部分内只有一个元素或空为止,即所有元素放在了其最终
 *位置上。
 *****时间复杂度:快排的运行时间与划分是否对称有关,最坏情况O(n^2),最好情况
 *O(nlogn),平均情况为O(nlogn)
 *****空间复杂度:由于需要递归工作栈,最坏情况为O(n),平均情况为O(logn)
 *****稳定性:不稳定
 */
int Partition(ElementType A[], int low, int high)
{
 // 划分操作有很多版本,这里就总以当前表中第一个元素作为枢纽/基准
 ElementType pivot = A[low];
 while(low < high)
 {
 while(low<high && A[high]>=pivot)
 --high;
 A[low] = A[high]; // 将比枢纽值小的元素移到左端
 while(low<high && A[low]<=pivot)
 ++low;
 A[high] = A[low]; // 将比枢纽值大的元素移到右端
 }

 A[low] = pivot; // 枢纽元素放到最终位置
 return low;  // 返回枢纽元素的位置
}

void QuickSort(ElementType A[], int low, int high)
{
 if(low < high) // 递归跳出的条件
 {
 int pivotPos = Partition(A, low, high); // 划分操作,返回基准元素的最终位置
 QuickSort(A, low, pivotPos-1); // 递归
 QuickSort(A, pivotPos+1, high);
 }
}

/*
 *<<简单选择排序>>
 * 选择排序的算法思想很简单,假设序列为L[n],第i趟排序即从L[i...n]中选择
 *关键字最小的元素与L(i)交换,每一趟排序可以确定一个元素的最终位置。经过n-1
 *趟排序就可以使得序列有序了。
 *****时间复杂度:始终是O(n^2)
 *****空间复杂度:O(1)
 *****稳定性:不稳定
 */
void SelectedSort(ElementType A[], int n)
{
 for(int i=0; i<n-1; ++i) // 一共进行n-1趟
 {
 int minPos = i; // 记录最小元素的位置

 for(int j=i+1; j<n; ++j)
 if(A[j] < A[minPos])
 minPos = j;

 if(minPos != i) // 与第i个位置交换
 {
 A[i] = A[i]^A[minPos];
 A[minPos] = A[i]^A[minPos];
 A[i] = A[i]^A[minPos];
 }
 }
}

/*
 *<<堆排序>>
 * 堆排序是一种树形选择排序方法,在排序过程中,将L[n]看成是一棵完全二叉
 *树的顺序存储结构,利用完全二叉树中双亲节点和孩子节点之间的内在关系,在当
 *前无序区中选择关键字最大(或最小)的元素。堆排序的思路是:首先将序列L[n]
 *的n个元素建成初始堆,由于堆本身的特点(以大根堆为例),堆顶元素就是最大
 *值。输出堆顶元素后,通常将堆底元素送入堆顶,此时根结点已不满足大根堆的性
 *质,堆被破坏,将堆顶元素向下调整使其继续保持大根堆的性质,再输出堆顶元素。
 *如此重复,直到堆中仅剩下一个元素为止。
 *****时间复杂度:O(nlogn)
 *****空间复杂度:O(1)
 *****稳定性:不稳定
 */

void AdjustDown(ElementType A[], int i, int len)
{
 ElementType temp = A[i]; // 暂存A[i]

 for(int largest=2*i+1; largest<len; largest=2*largest+1)
 {
 if(largest!=len-1 && A[largest+1]>A[largest])
 ++largest;   // 如果右子结点大
 if(temp < A[largest])
 {
 A[i] = A[largest];
 i = largest;   // 记录交换后的位置
 }
 else
 break;
 }
 A[i] = temp; // 被筛选结点的值放入最终位置
}
void BuildMaxHeap(ElementType A[], int len)
{
 for(int i=len/2-1; i>=0; --i) // 从i=[n/2]~1,反复调整堆
 AdjustDown(A, i, len);
}
void HeapSort(ElementType A[], int n)
{
 BuildMaxHeap(A, n);  // 初始建堆
 for(int i=n-1; i>0; --i) // n-1趟的交换和建堆过程
 {
 // 输出最大的堆顶元素(和堆底元素交换)
 A[0] = A[0]^A[i];
 A[i] = A[0]^A[i];
 A[0] = A[0]^A[i];
 // 调整,把剩余的n-1个元素整理成堆
 AdjustDown(A, 0, i);
 }
}

/*
 *<<2-路归并排序>>
 * 顾名思义,2-路归并就是将2个有序表组合成一个新的有序表。假定待排序表
 *有n个元素,则可以看成是n个有序的子表,每个子表长度为1,然后两两归并...不
 *停重复,直到合成一个长度为n的有序序列为止。Merge()函数是将前后相邻的两个
 *有序表归并为一个有序表,设A[low...mid]和A[mid+1...high]存放在同一顺序表的
 *相邻位置上,先将它们复制到辅助数组B中。每次从对应B中的两个段取出一个元素
 *进行比较,将较小者放入A中。
 *****时间复杂度:每一趟归并为O(n),共log2n趟,所以时间为O(nlog2n)
 *****空间复杂度:O(n)
 *****稳定性:稳定
 */
ElementType *B = new ElementType[13]; // 和数组A一样大
void Merge(ElementType A[], int low, int mid, int high)
{
 int i, j, k;
 for(k=low; k<=high; ++k)
 B[k] = A[k];    // 将A中所有元素复制到B
 for(i=low,j=mid+1,k=i; i<=mid&&j<=high; ++k)
 {
 if(B[i] <= B[j])  // 比较B的左右两段序列中的元素
 A[k] = B[i++]; // 将较小值复制到A中
 else
 A[k] = B[j++];
 }
 while(i<=mid) A[k++] = B[i++]; // 若第一个表未检测完,复制
 while(j<=high) A[k++] = B[j++]; // 若第二个表未检测完,复制
}

void MergeSort(ElementType A[], int low, int high)
{
 if(low < high)
 {
 int mid = (low + high)/2;
 MergeSort(A, low, mid);  // 对左侧子序列进行递归排序
 MergeSort(A, mid+1, high); // 对右侧子序列进行递归排序
 Merge(A, low, mid, high);  // 归并
 }
}

/*
 * 输出函数
 */
void print(ElementType A[], int n)
{
 for(int i=0; i<n; ++i)
 {
 cout << A[i] << " ";
 }
 cout << endl;
}

/*
 * 主函数
 */
int main()
{
 ElementType Arr[13] = {5,2,1,8,3,6,4,7,0,9,12,10,11};
 //InsertSort(Arr, 13);
 //BinaryInsertSort(Arr, 13);
 //ShellSort(Arr, 13);
 //BubbleSort(Arr, 13);
 //QuickSort(Arr, 0, 12);
 //SelectedSort(Arr, 13);
 //HeapSort(Arr, 13);
 //MergeSort(Arr, 0, 12);
 print(Arr, 13);
 return 0;
}

相信本文所述实例代码对大家复习和巩固各类排序算法能起到一定的帮助作用。

(0)

相关推荐

  • 利用C++的基本算法实现十个数排序

    冒泡排序法原理:它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成. 冒泡排序算法的运作如下:1.比较相邻的元素.如果第一个比第二个大,就交换他们两个. 2.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 3.针对所有的元素重复以上的步骤,除了最后一个. 4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较. 示例代码:

  • C++简单实现的全排列算法示例

    本文实例讲述了C++简单实现的全排列算法.分享给大家供大家参考,具体如下: #include "stdafx.h" #include <string> #include <algorithm> #include <iostream> void func(const char *str_in) { std::string str(str_in); std::sort(str.begin(),str.end()); do { std::cout<&

  • C++归并排序算法实例

    归并排序 归并排序算法是采用分治法的一个非常典型的应用.归并排序的思想是将一个数组中的数都分成单个的:对于单独的一个数,它肯定是有序的,然后,我们将这些有序的单个数在合并起来,组成一个有序的数列.这就是归并排序的思想.它的时间复杂度为O(N*logN). 代码实现 复制代码 代码如下: #include <iostream> using namespace std;   //将有二个有序数列a[first...mid]和a[mid...last]合并. void mergearray(int

  • C++插入排序算法实例

    插入排序 没事喜欢看看数据结构和算法,增加自己对数据结构和算法的认识,同时也增加自己的编程基本功.插入排序是排序中比较常见的一种,理解起来非常简单.现在比如有以下数据需要进行排序: 10 3 8 0 6 9 2 当使用插入排序进行升序排序时,排序的步骤是这样的: 10 3 8 0 6 9 2 // 取元素3,去和10进行对比 3 10 8 0 6 9 2 // 由于10比3大,将10向后移动,将3放置在原来10的位置:再取8与前一个元素10进行对比 3 8 10 0 6 9 2 // 同理移动1

  • 使用C++实现全排列算法的方法详解

    复制代码 代码如下: <P>不论是哪种全排列生成算法,都遵循着"原排列"→"原中介数"→"新中介数"→"新排列"的过程.</P><P>其中中介数依据算法的不同会的到递增进位制数和递减进位制数.</P><P>关于排列和中介数的一一对应性的证明我们不做讨论,这里仅仅给出了排列和中介数的详细映射方法.</P> · 递增进位制和递减进位制数  所谓递增进位制和递减

  • C++冒泡排序算法实例

    冒泡排序 大学学习数据结构与算法最开始的时候,就讲了冒泡排序:可见这个排序算法是多么的经典.冒泡排序是一种非常简单的排序算法,它重复地走访过要排序的数列,每一次比较两个数,按照升序或降序的规则,对比较的两个数进行交换.比如现在我要对以下数据进行排序: 10 3 8 0 6 9 2 当使用冒泡排序进行升序排序时,排序的步骤是这样的: 3 10 8 0 6 9 2  // 10和3进行对比,10>3,交换位置 3 8 10 0 6 9 2  // 10再和8进行对比,10>8,交换位置 3 8 0

  • 全排列算法的非递归实现与递归实现的方法(C++)

    (一)非递归全排列算法基本思想是:    1.找到所有排列中最小的一个排列P.    2.找到刚刚好比P大比其它都小的排列Q,    3.循环执行第二步,直到找到一个最大的排列,算法结束.下面用数学的方法描述:给定已知序列 P =  A1A2A3An ( Ai!=Aj , (1<=i<=n  , 1<=j<=n, i != j  ) )找到P的一个最小排列Pmin = P1P2P3Pn  有  Pi > P(i-1) (1 < i <= n)从Pmin开始,总是目

  • C++选择排序算法实例

    选择排序 选择排序是一种简单直观的排序算法,它的工作原理如下.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾.以此类推,直到所有元素均排序完毕. 选择排序的主要优点与数据移动有关.如果某个元素位于正确的最终位置上,则它不会被移动.选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换.在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常

  • C++实现八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序等

    本文实现了八个常用的排序算法:插入排序.冒泡排序.选择排序.希尔排序 .快速排序.归并排序.堆排序和LST基数排序 首先是算法实现文件Sort.h,代码如下: /* * 实现了八个常用的排序算法:插入排序.冒泡排序.选择排序.希尔排序 * 以及快速排序.归并排序.堆排序和LST基数排序 * @author gkh178 */ #include <iostream> template<class T> void swap_value(T &a, T &b) { T t

  • C++堆排序算法的实现方法

    本文实例讲述了C++实现堆排序算法的方法,相信对于大家学习数据结构与算法会起到一定的帮助作用.具体内容如下: 首先,由于堆排序算法说起来比较长,所以在这里单独讲一下.堆排序是一种树形选择排序方法,它的特点是:在排序过程中,将L[n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子节点之间的内在关系,在当前无序区中选择关键字最大(或最小)的元素. 一.堆的定义 堆的定义如下:n个关键字序列L[n]成为堆,当且仅当该序列满足: ①L(i) <= L(2i)且L(i) <= L(2

  • C++实现各种排序算法类汇总

    C++可实现各种排序算法类,比如直接插入排序.折半插入排序.Shell排序.归并排序.简单选择排序.基数排序.对data数组中的元素进行希尔排序.冒泡排序.递归实现.堆排序.用数组实现的基数排序等. 具体代码如下: #ifndef SORT_H #define SORT_H #include <iostream> #include <queue> using namespace std; // 1.直接插入排序 template<class ElemType> void

  • C++线性时间的排序算法分析

    前面的文章已经介绍了几种排序算法,如插入排序(直接插入排序,折半插入排序,希尔排序).交换排序(冒泡排序,快速排序).选择排序(简单选择排序,堆排序).2-路归并排序(可以参考前一篇文章:各种内部排序算法的实现)等,这些排序算法都有一个共同的特点,就是基于比较. 本文将介绍三种非比较的排序算法:计数排序,基数排序,桶排序.它们将突破比较排序的Ω(nlgn)下界,以线性时间运行. 一.比较排序算法的时间下界 所谓的比较排序是指通过比较来决定元素间的相对次序. "定理:对于含n个元素的一个输入序列,

随机推荐