Gauss-Seidel迭代算法的Python实现详解

import numpy as np
import time

1.1 Gauss-Seidel迭代算法

def GaussSeidel_tensor_V2(A,b,Delta,m,n,M):
start=time.perf_counter()
find=0
X=np.ones(n)
d=np.ones(n)
m1=m-1
m2=2-m
for i in range(M):
print('X',X)
x=np.copy(X)
#迭代更新
for j in range(n):
a=np.copy(A)
for k in range(m-2):
a=np.dot(a,x)
for k in range(n):
d[k]=a[k,k]
a[k,k]=m2*a[k,k]
x[j]=(b[j]-np.dot(a[j],x))/(m1*d[j])
#判断是否满足精度要求
if np.max(np.fabs(X-x))<Delta:
find=1
break
X=np.copy(x)
end=time.perf_counter()
print('时间:',end-start)
print('迭代',i)
return X,find,i,end-start

1.2张量A的生成函数和向量b的生成函数:

def Creat_A(m,n):#生成张量A
size=np.full(m, n)
X=np.ones(n)
while 1:
#随机生成给定形状的张量A
A=np.random.randint(-49,50,size=size)
#判断Dx**(m-2)是否非奇异,如果是,则满足要求,跳出循环
D=np.copy(A)
for i1 in range(n):
for i2 in range(n):
if i1!=i2:
D[i1,i2]=0
for i in range(m-2):
D=np.dot(D,X)
det=np.linalg.det(D)
if det!=0:
break
#将A的对角面张量扩大十倍,使对角面占优
for i1 in range(n):
for i2 in range(n):
if i1==i2:
A[i1,i2]=A[i1,i2]*10
print('A:')
print(A)
return A
#由A和给定的X根据Ax**(m-1)=b生成向量b
def Creat_b(A,X,m):
a=np.copy(A)
for i in range(m-1):
a=np.dot(a,X)
print('b:')
print(a)
return a

1.3 对称张量S的生成函数:

def Creat_S(m,n):#生成对称张量B
size=np.full(m, n)
S=np.zeros(size)
print('S',S)
for i in range(4):
#生成n为向量a
a=np.random.random(n)*np.random.randint(-5,6)
b=np.copy(a)
#对a进行m-1次外积,得到秩1对称张量b
for j in range(m-1):
b=outer(b,a)
#将不同的b叠加得到低秩对称张量S
S=S+b
print('S:')
print(S)
return S
def outer(a,b):
c=[]
for i in b:
c.append(i*a)
return np.array(c)
return a

1.4 实验二

def test_2():
Delta=0.01#精度
m=3#A的阶数
n=3#A的维数
M=200#最大迭代步数
X_real=np.array( [2,3,4])
A=Creat_A(m,n)
b=Creat_b(A,X_real,m)
GaussSeidel_tensor_V2(A,b,Delta,m,n)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python数据结构与算法之图的基本实现及迭代器实例详解

    本文实例讲述了Python数据结构与算法之图的基本实现及迭代器.分享给大家供大家参考,具体如下: 这篇文章参考自<复杂性思考>一书的第二章,并给出这一章节里我的习题解答. (这书不到120页纸,要卖50块!!,一开始以为很厚的样子,拿回来一看,尼玛.....代码很少,给点提示,然后让读者自己思考怎么实现) 先定义顶点和边 class Vertex(object): def __init__(self, label=''): self.label = label def __repr__(sel

  • 详解Python3中的迭代器和生成器及其区别

    介绍 本篇将介绍Python3中的迭代器与生成器,描述可迭代与迭代器关系,并实现自定义类的迭代器模式. 迭代的概念 上一次输出的结果为下一次输入的初始值,重复的过程称为迭代,每次重复即一次迭代,并且每次迭代的结果是下一次迭代的初始值 注:循环不是迭代 while True: #只满足重复,因而不是迭代 print('====>')  迭代器 1.为什么要有迭代器? 对于没有索引的数据类型,必须提供一种不依赖索引的迭代方式. 2.迭代器定义: 迭代器:可迭代对象执行__iter__方法,得到的结果

  • Python cookbook(数据结构与算法)从任意长度的可迭代对象中分解元素操作示例

    本文实例讲述了python从任意长度的可迭代对象中分解元素操作.分享给大家供大家参考,具体如下: 从某个可迭代对象中分解出N个元素,但是可迭代对象的长度可能超过N,会出现"分解值过多"的异常: 使用"*表达式"来解决该问题: Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC v.1600 32 bit (Intel)] on win32 Type "copyright",

  • Python生成一个迭代器的实操方法

    Python怎么生成一个迭代器,对于需要处理大型数据来说,迭代器是必不可少的,这样可节省大量内存空间,更加合理操作数据. 首先我们打开编辑器,这里以Sublime text3作为示范,创建一个新的py文档. rg = range(100) for i in rg: print(i) 我们知道range可以涵盖比较广的范围,但是如果数据太大的时候,一次性打印会占用比较多内存. rg = range(100) rg_iter = iter(rg) print(rg_iter) 那么这个时候我们就可以

  • Python3爬楼梯算法示例

    本文实例讲述了Python3爬楼梯算法.分享给大家供大家参考,具体如下: 假设你正在爬楼梯.需要 n 步你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 方案一:每一步都是前两步和前一步的和 class Solution(object): def climbStairs(self, n): """ :type n: int :rtype: int """ pre, cur =

  • 详解python算法之冒泡排序

    python之冒泡排序 概念: 重复地走访过要排序的元素列,依次比较两个相邻的元素,如果他们的顺序(如从大到小.首字母从A到Z)错误就把他们交换过来.走访元素的工作是重复地进行直到没有相邻元素需要交换,也就是说该元素已经排序完成 这个算法的名字由来是因为越大的元素会经由交换慢慢"浮"到数列的顶端(升序或降序排列),就如同碳酸饮料中二氧化碳的气泡最终会上浮到顶端一样,故名"冒泡排序". 算法原理 冒泡排序算法的原理如下: 比较相邻的元素.如果第一个比第二个大,就交换他

  • Jacobi迭代算法的Python实现详解

    import numpy as np import time 1.1 Jacobi迭代算法 def Jacobi_tensor_V2(A,b,Delta,m,n,M): start=time.perf_counter()#开始计时 find=0#用于标记是否在规定步数内收敛 X=np.ones(n)#迭代起始点 x=np.ones(n)#用于存储迭代的中间结果 d=np.ones(n)#用于存储Ax**(m-2)的对角线部分 m1=m-1 m2=2-m for i in range(M): pr

  • Gauss-Seidel迭代算法的Python实现详解

    import numpy as np import time 1.1 Gauss-Seidel迭代算法 def GaussSeidel_tensor_V2(A,b,Delta,m,n,M): start=time.perf_counter() find=0 X=np.ones(n) d=np.ones(n) m1=m-1 m2=2-m for i in range(M): print('X',X) x=np.copy(X) #迭代更新 for j in range(n): a=np.copy(A

  • Python高级特性之切片迭代列表生成式及生成器详解

    目录 切片 迭代 列表生成式 生成器 迭代器 在Python中,代码越少越好.越简单越好.基于这一思想,需要掌握Python中非常有用的高级特性,1行代码能实现的功能,决不写5行代码.代码越少,开发效率越高. 切片 tuple,list,字符串都可以进行切片操作 L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack'] L[0:3] # ['Michael', 'Sarah', 'Tracy'] L[:3] # ['Michael', 'Sarah', '

  • Python数据结构与算法之跳表详解

    目录 0. 学习目标 1. 跳表的基本概念 1.1 跳表介绍 1.2 跳表的性能 1.3 跳表与普通链表的异同 2. 跳表的实现 2.1 跳表结点类 2.2 跳表的初始化 2.3 获取跳表长度 2.4 读取指定位置元素 2.5 查找指定元素 2.6 在跳表中插入新元素 2.7 删除跳表中指定元素 2.8 其它一些有用的操作 3. 跳表应用 3.1 跳表应用示例 0. 学习目标 在诸如单链表.双线链表等普通链表中,查找.插入和删除操作由于必须从头结点遍历链表才能找到相关链表,因此时间复杂度均为O(

  • Python OpenCV Canny边缘检测算法的原理实现详解

    目录 Gaussian smoothing Computing the gradient magnitude and orientation Non-maxima suppression Hysteresis thresholding OpenCV实现 Gaussian smoothing 总的来说,Canny边缘检测可以分为四个步骤: 由于边缘检测对噪声敏感,因此对图像应用高斯平滑以帮助减少噪声.具体做法是,采用一个5*5的高斯平滑滤波器对图像进行滤波处理. Computing the gra

  • 神经网络理论基础及Python实现详解

    一.多层前向神经网络 多层前向神经网络由三部分组成:输出层.隐藏层.输出层,每层由单元组成: 输入层由训练集的实例特征向量传入,经过连接结点的权重传入下一层,前一层的输出是下一层的输入:隐藏层的个数是任意的,输入层只有一层,输出层也只有一层: 除去输入层之外,隐藏层和输出层的层数和为n,则该神经网络称为n层神经网络,如下图为2层的神经网络: 一层中加权求和,根据非线性方程进行转化输出:理论上,如果有足够多的隐藏层和足够大的训练集,可以模拟出任何方程: 二.设计神经网络结构 使用神经网络之前,必须

  • 机器学习经典算法-logistic回归代码详解

    一.算法简要 我们希望有这么一种函数:接受输入然后预测出类别,这样用于分类.这里,用到了数学中的sigmoid函数,sigmoid函数的具体表达式和函数图象如下: 可以较为清楚的看到,当输入的x小于0时,函数值<0.5,将分类预测为0:当输入的x大于0时,函数值>0.5,将分类预测为1. 1.1 预测函数的表示 1.2参数的求解 二.代码实现 函数sigmoid计算相应的函数值:gradAscent实现的batch-梯度上升,意思就是在每次迭代中所有数据集都考虑到了:而stoGradAscen

  • Python实例详解递归算法

    递归是一种较为抽象的数学逻辑,可以简单的理解为「程序调用自身的算法」. 维基百科对递归的解释是: 递归(英语:Recursion),又译为递回,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法.递归一词还较常用于描述以自相似方法重复事物的过程. 例如,当两面镜子相互之间近似平行时,镜中嵌套的图像是以无限递归的形式出现的.也可以理解为自我复制的过程. "递"是传递的意思,"归"是归还的意思,先把一个方法一层层传递下去,然后传递到最后一层再把结果归还回来. 比

  • Python注释详解

    注释用于说明代码实现的功能.采用的算法.代码的编写者以及创建和修改的时间等信息. 注释是代码的一部分,注释起到了对代码补充说明的作用. Python注释 Python单行注释以#开头,单行注释可以作为单独的一行放在被注释的代码行之上,也可以放在语句或者表达式之后. #Give you a chance to let you know me print("Give you a chance to let you know me") say_what = "this is a d

  • 最小二乘法及其python实现详解

    最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出).它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达. 那什么是最小二乘法呢?别着急,我们先从几个简单的概念说起. 假设我们现在有一系列的数据点 ,那么由我们给出的拟合函数h(x)得到的估计量就是

随机推荐