Python实现的NN神经网络算法完整示例

本文实例讲述了Python实现的NN神经网络算法。分享给大家供大家参考,具体如下:

参考自Github开源代码:https://github.com/dennybritz/nn-from-scratch

运行环境

  • Pyhton3
  • numpy(科学计算包)
  • matplotlib(画图所需,不画图可不必)
  • sklearn(人工智能包,生成数据使用)

计算过程

输入样例

none

代码实现

# -*- coding:utf-8 -*-
#!python3
__author__ = 'Wsine'
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
import matplotlib.pyplot as plt
import matplotlib
import operator
import time
def createData(dim=200, cnoise=0.20):
  """
  输出:数据集, 对应的类别标签
  描述:生成一个数据集和对应的类别标签
  """
  np.random.seed(0)
  X, y = sklearn.datasets.make_moons(dim, noise=cnoise)
  plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral)
  #plt.show()
  return X, y
def plot_decision_boundary(pred_func, X, y):
  """
  输入:边界函数, 数据集, 类别标签
  描述:绘制决策边界(画图用)
  """
  # 设置最小最大值, 加上一点外边界
  x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
  y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
  h = 0.01
  # 根据最小最大值和一个网格距离生成整个网格
  xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
  # 对整个网格预测边界值
  Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
  Z = Z.reshape(xx.shape)
  # 绘制边界和数据集的点
  plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
  plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
def calculate_loss(model, X, y):
  """
  输入:训练模型, 数据集, 类别标签
  输出:误判的概率
  描述:计算整个模型的性能
  """
  W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
  # 正向传播来计算预测的分类值
  z1 = X.dot(W1) + b1
  a1 = np.tanh(z1)
  z2 = a1.dot(W2) + b2
  exp_scores = np.exp(z2)
  probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
  # 计算误判概率
  corect_logprobs = -np.log(probs[range(num_examples), y])
  data_loss = np.sum(corect_logprobs)
  # 加入正则项修正错误(可选)
  data_loss += reg_lambda/2 * (np.sum(np.square(W1)) + np.sum(np.square(W2)))
  return 1./num_examples * data_loss
def predict(model, x):
  """
  输入:训练模型, 预测向量
  输出:判决类别
  描述:预测类别属于(0 or 1)
  """
  W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
  # 正向传播计算
  z1 = x.dot(W1) + b1
  a1 = np.tanh(z1)
  z2 = a1.dot(W2) + b2
  exp_scores = np.exp(z2)
  probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
  return np.argmax(probs, axis=1)
def initParameter(X):
  """
  输入:数据集
  描述:初始化神经网络算法的参数
     必须初始化为全局函数!
     这里需要手动设置!
  """
  global num_examples
  num_examples = len(X) # 训练集的大小
  global nn_input_dim
  nn_input_dim = 2 # 输入层维数
  global nn_output_dim
  nn_output_dim = 2 # 输出层维数
  # 梯度下降参数
  global epsilon
  epsilon = 0.01 # 梯度下降学习步长
  global reg_lambda
  reg_lambda = 0.01 # 修正的指数
def build_model(X, y, nn_hdim, num_passes=20000, print_loss=False):
  """
  输入:数据集, 类别标签, 隐藏层层数, 迭代次数, 是否输出误判率
  输出:神经网络模型
  描述:生成一个指定层数的神经网络模型
  """
  # 根据维度随机初始化参数
  np.random.seed(0)
  W1 = np.random.randn(nn_input_dim, nn_hdim) / np.sqrt(nn_input_dim)
  b1 = np.zeros((1, nn_hdim))
  W2 = np.random.randn(nn_hdim, nn_output_dim) / np.sqrt(nn_hdim)
  b2 = np.zeros((1, nn_output_dim))
  model = {}
  # 梯度下降
  for i in range(0, num_passes):
    # 正向传播
    z1 = X.dot(W1) + b1
    a1 = np.tanh(z1) # 激活函数使用tanh = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
    z2 = a1.dot(W2) + b2
    exp_scores = np.exp(z2) # 原始归一化
    probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
    # 后向传播
    delta3 = probs
    delta3[range(num_examples), y] -= 1
    dW2 = (a1.T).dot(delta3)
    db2 = np.sum(delta3, axis=0, keepdims=True)
    delta2 = delta3.dot(W2.T) * (1 - np.power(a1, 2))
    dW1 = np.dot(X.T, delta2)
    db1 = np.sum(delta2, axis=0)
    # 加入修正项
    dW2 += reg_lambda * W2
    dW1 += reg_lambda * W1
    # 更新梯度下降参数
    W1 += -epsilon * dW1
    b1 += -epsilon * db1
    W2 += -epsilon * dW2
    b2 += -epsilon * db2
    # 更新模型
    model = { 'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}
    # 一定迭代次数后输出当前误判率
    if print_loss and i % 1000 == 0:
      print("Loss after iteration %i: %f" % (i, calculate_loss(model, X, y)))
  plot_decision_boundary(lambda x: predict(model, x), X, y)
  plt.title("Decision Boundary for hidden layer size %d" % nn_hdim)
  #plt.show()
  return model
def main():
  dataSet, labels = createData(200, 0.20)
  initParameter(dataSet)
  nnModel = build_model(dataSet, labels, 3, print_loss=False)
  print("Loss is %f" % calculate_loss(nnModel, dataSet, labels))
if __name__ == '__main__':
  start = time.clock()
  main()
  end = time.clock()
  print('finish all in %s' % str(end - start))
  plt.show()

输出样例

Loss is 0.071316
finish all in 7.221354361552228

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • 自适应线性神经网络Adaline的python实现详解

    自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络. 相对于感知器,采用了f(z)=z的激活函数,属于连续函数. 代价函数为LMS函数,最小均方算法,Least mean square. 实现上,采用随机梯度下降,由于更新的随机性,运行多次结果是不同的. ''' Adaline classifier created on 2019.9.14 author: vince ''' import pandas import math import numpy

  • Python使用numpy实现BP神经网络

    本文完全利用numpy实现一个简单的BP神经网络,由于是做regression而不是classification,因此在这里输出层选取的激励函数就是f(x)=x.BP神经网络的具体原理此处不再介绍. import numpy as np class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in i

  • 基于python神经卷积网络的人脸识别

    本文实例为大家分享了基于神经卷积网络的人脸识别,供大家参考,具体内容如下 1.人脸识别整体设计方案 客_服交互流程图: 2.服务端代码展示 sk = socket.socket() # s.bind(address) 将套接字绑定到地址.在AF_INET下,以元组(host,port)的形式表示地址. sk.bind(("172.29.25.11",8007)) # 开始监听传入连接. sk.listen(True) while True: for i in range(100): #

  • Python实现的径向基(RBF)神经网络示例

    本文实例讲述了Python实现的径向基(RBF)神经网络.分享给大家供大家参考,具体如下: from numpy import array, append, vstack, transpose, reshape, \ dot, true_divide, mean, exp, sqrt, log, \ loadtxt, savetxt, zeros, frombuffer from numpy.linalg import norm, lstsq from multiprocessing impor

  • Python编程实现的简单神经网络算法示例

    本文实例讲述了Python编程实现的简单神经网络算法.分享给大家供大家参考,具体如下: python实现二层神经网络 包括输入层和输出层 # -*- coding:utf-8 -*- #! python2 import numpy as np #sigmoid function def nonlin(x, deriv = False): if(deriv == True): return x*(1-x) return 1/(1+np.exp(-x)) #input dataset x = np.

  • python构建深度神经网络(DNN)

    本文学习Neural Networks and Deep Learning 在线免费书籍,用python构建神经网络识别手写体的一个总结. 代码主要包括两三部分: 1).数据调用和预处理 2).神经网络类构建和方法建立 3).代码测试文件 1)数据调用: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 15:11 # @Author : CC # @File : net_load_data.py # @Soft

  • 神经网络(BP)算法Python实现及应用

    本文实例为大家分享了Python实现神经网络算法及应用的具体代码,供大家参考,具体内容如下 首先用Python实现简单地神经网络算法: import numpy as np # 定义tanh函数 def tanh(x): return np.tanh(x) # tanh函数的导数 def tan_deriv(x): return 1.0 - np.tanh(x) * np.tan(x) # sigmoid函数 def logistic(x): return 1 / (1 + np.exp(-x)

  • Python实现的NN神经网络算法完整示例

    本文实例讲述了Python实现的NN神经网络算法.分享给大家供大家参考,具体如下: 参考自Github开源代码:https://github.com/dennybritz/nn-from-scratch 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) sklearn(人工智能包,生成数据使用) 计算过程 输入样例 none 代码实现 # -*- coding:utf-8 -*- #!python3 __author__ = 'Wsine' im

  • python实现协同过滤推荐算法完整代码示例

    测试数据 http://grouplens.org/datasets/movielens/ 协同过滤推荐算法主要分为: 1.基于用户.根据相邻用户,预测当前用户没有偏好的未涉及物品,计算得到一个排序的物品列表进行推荐 2.基于物品.如喜欢物品A的用户都喜欢物品C,那么可以知道物品A与物品C的相似度很高,而用户C喜欢物品A,那么可以推断出用户C也可能喜欢物品C. 不同的数据.不同的程序猿写出的协同过滤推荐算法不同,但其核心是一致的: 1.收集用户的偏好 1)不同行为分组 2)不同分组进行加权计算用

  • Python实现的人工神经网络算法示例【基于反向传播算法】

    本文实例讲述了Python实现的人工神经网络算法.分享给大家供大家参考,具体如下: 注意:本程序使用Python3编写,额外需要安装numpy工具包用于矩阵运算,未测试python2是否可以运行. 本程序实现了<机器学习>书中所述的反向传播算法训练人工神经网络,理论部分请参考我的读书笔记. 在本程序中,目标函数是由一个输入x和两个输出y组成, x是在范围[-3.14, 3.14]之间随机生成的实数,而两个y值分别对应 y1 = sin(x),y2 = 1. 随机生成一万份训练样例,经过网络的学

  • Python实现曲线点抽稀算法的示例

    本文介绍了Python实现曲线点抽稀算法的示例,分享给大家,具体如下: 目录 何为抽稀 道格拉斯-普克(Douglas-Peuker)算法 垂距限值法 最后 正文 何为抽稀 在处理矢量化数据时,记录中往往会有很多重复数据,对进一步数据处理带来诸多不便.多余的数据一方面浪费了较多的存储空间,另一方面造成所要表达的图形不光滑或不符合标准.因此要通过某种规则,在保证矢量曲线形状不变的情况下, 最大限度地减少数据点个数,这个过程称为抽稀. 通俗的讲就是对曲线进行采样简化,即在曲线上取有限个点,将其变为折

  • Python数学建模学习模拟退火算法旅行商问题示例解析

    目录 1.旅行商问题(Travelling salesman problem, TSP) 2.模拟退火算法求解旅行商问题 3. 程序说明 4.模拟退火算法求解旅行商问题 Python 程序 5.运行结果 1.旅行商问题(Travelling salesman problem, TSP) 旅行商问题是经典的组合优化问题,要求找到遍历所有城市且每个城市只访问一次的最短旅行路线,即对给定的正权完全图求其总权重最小的Hamilton回路:设有 n个城市和距离矩阵 D=[dij],其中dij表示城市i到城

  • Python&Matlab实现灰狼优化算法的示例代码

    目录 1 灰狼优化算法基本思想 2 灰狼捕食猎物过程 2.1 社会等级分层 2.2 包围猎物 2.3 狩猎 2.4 攻击猎物 2.5 寻找猎物 3 实现步骤及程序框图 3.1 步骤 3.2 程序框图 4 Python代码实现 5 Matlab实现 1 灰狼优化算法基本思想 灰狼优化算法是一种群智能优化算法,它的独特之处在于一小部分拥有绝对话语权的灰狼带领一群灰狼向猎物前进.在了解灰狼优化算法的特点之前,我们有必要了解灰狼群中的等级制度. 灰狼群一般分为4个等级:处于第一等级的灰狼用α表示,处于第

  • Python和Matlab实现蝙蝠算法的示例代码

    目录 1前言 2 蝙蝠算法原理细讲 3 详细步骤 4Python实现 4.1代码 4.2结果 5Matlab实现 5.1 代码 5.2 结果 5.3 展望 1 前言 蝙蝠算法是2010年杨教授基于群体智能提出的启发式搜索算法,是一种搜索全局最优解的有效方法.该算法基于迭代优化,初始化为一组随机解,然后迭代搜寻最优解,且在最优解周围通过随机飞行产生局部新解,加强局部搜索速度.该算法具有实现简单.参数少等特点. 该算法主要用于目标函数寻优,基于蝙蝠种群利用产生的声波搜索猎物和控制飞行方向的特征来实现

  • Python实现异常检测LOF算法的示例代码

    目录 背景 LOF算法 1.k邻近距离 2.k距离领域 3.可达距离 4.局部可达密度 5.局部异常因子 LOF算法流程 LOF优缺点 Python实现LOF PyOD Sklearn 大家好,我是东哥. 本篇和大家介绍一个经典的异常检测算法:局部离群因子(Local Outlier Factor),简称LOF算法. 背景 Local Outlier Factor(LOF)是基于密度的经典算法(Breuning et. al. 2000), 文章发表于 SIGMOD 2000, 到目前已经有 3

  • Python实现孤立随机森林算法的示例代码

    目录 1 简介 2 孤立随机森林算法 2.1 算法概述 2.2 原理介绍 2.3 算法步骤 3 参数讲解 4 Python代码实现 5 结果 1 简介 孤立森林(isolation Forest)是一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或基尼指数来选择. 2 孤立随机森林算法 2.1 算法概述 Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好

  • Python中八大图像特效算法的示例详解

    目录 0写在前面 1毛玻璃特效 2浮雕特效 3油画特效 4马赛克特效 5素描特效 6怀旧特效 7流年特效 8卡通特效 0 写在前面 图像特效处理是基于图像像素数据特征,将原图像进行一定步骤的计算——例如像素作差.灰度变换.颜色通道融合等,从而达到期望的效果.图像特效处理是日常生活中应用非常广泛的一种计算机视觉应用,出现在各种美图软件中,这些精美滤镜背后的数学原理都是相通的,本文主要介绍八大基本图像特效算法,在这些算法基础上可以进行二次开发,生成更高级的滤镜. 本文采用面向对象设计,定义了一个图像

随机推荐