使用pandas的DataFrame的plot方法绘制图像的实例
使用了pandas的Series方法绘制图像体验之后感觉直接用matplotlib的功能好用了不少,又试用了DataFrame的方法之后发现这个更加人性化。
写代码如下:
from pandas import Series,DataFrame from numpy.random import randn import numpy as np import matplotlib.pyplot as plt df = DataFrame(randn(10,5),columns=['A','B','C','D','E'],index = np.arange(0,100,10)) df.plot() plt.show()
程序运行结果如下:
使用DataFrame的plot方法绘制图像会按照数据的每一列绘制一条曲线,参数中的columns就是列的名称而index本来是DataFrame的行名称。图形绘制成功之后还会按照列的名称绘制图例,这个功能确实是比较赞的。如果使用matplotlib的基本绘制功能,图例的添加还需要自己额外处理。看来,数据的规整化不仅仅是为了向量化以及计算加速做准备,而且为数据的可视化提供了不少便捷的方法。
以上这篇使用pandas的DataFrame的plot方法绘制图像的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
pandas修改DataFrame列名的方法
在做数据挖掘的时候,想改一个DataFrame的column名称,所以就查了一下,总结如下: 数据如下: >>>import pandas as pd >>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]}) >>> a A B C 0 1 4 7 1 2 5 8 2 3 6 9 方法一:暴力方法 >>>a.columns = ['a','b','c'] >>
-
对pandas的dataframe绘图并保存的实现方法
对dataframe绘图并保存: ax = df.plot() fig = ax.get_figure() fig.savefig('fig.png') 可以制定列,对该列各取值作统计: label_dis = df.label.value_counts() ax = label_dis.plot(title='label distribution', kind='bar', figsize=(18, 12)) fig = ax.get_figure() fig.savefig('label_d
-
pandas系列之DataFrame 行列数据筛选实例
一.对DataFrame的认知 DataFrame的本质是行(index)列(column)索引+多列数据. 为了简化理解,我们不妨换个思路- 现实中,为了简化对一件事物的描述,我们会选择几个特征. 例如,从(性别.身高.学历.职业.爱好..)等角度去刻画一个人,这些"角度"即为"特征". 其中,不同的行表示不同的记录:列代表特征,不同记录因各个特征之间的差异而不同. DataFrame默认索引是序号(0,1,2-),可以理解成位置索引.一般我们用id标识不同记录,
-
解决pandas无法在pycharm中使用plot()方法显示图像的问题
最近用了pycharm,感觉还不错,就是pandas中Series.DataFrame的plot()方法不显示图片就给我结束了,但是我在ipython里就能画图 以前的代码是这样的 import matplotlib.pyplot as plt from pandas import DataFrame,Series Series([4,5,7]).plot() 找了半天 发现只要加个 plt.show() 就可以显示图像了了 import matplotlib.pyplot as plt fro
-
python pandas dataframe 行列选择,切片操作方法
SQL中的select是根据列的名称来选取:Pandas则更为灵活,不但可根据列名称选取,还可以根据列所在的position(数字,在第几行第几列,注意pandas行列的position是从0开始)选取.相关函数如下: 1)loc,基于列label,可选取特定行(根据行index): 2)iloc,基于行/列的position: 3)at,根据指定行index及列label,快速定位DataFrame的元素: 4)iat,与at类似,不同的是根据position来定位的: 5)ix,为loc与i
-
使用pandas中的DataFrame数据绘制柱状图的方法
折线图是数据分析的一种手段,但是有时候我们也需要柱状图进行不同数据的可视化量化对比.使用pandas的DataFrame方法进行柱状图的绘制也是比较方便的. 把之前的折线图绘制代码修改一下如下: from pandas import Series,DataFrame from numpy.random import randn import numpy as np import matplotlib.pyplot as plt df = DataFrame(abs(randn(10,5)),co
-
使用pandas的DataFrame的plot方法绘制图像的实例
使用了pandas的Series方法绘制图像体验之后感觉直接用matplotlib的功能好用了不少,又试用了DataFrame的方法之后发现这个更加人性化. 写代码如下: from pandas import Series,DataFrame from numpy.random import randn import numpy as np import matplotlib.pyplot as plt df = DataFrame(randn(10,5),columns=['A','B','C
-
使用Pandas的Series方法绘制图像教程
通常绘制二维曲线的时候可以使用matplotlib,不过如果电脑上安装了pandas的话可以直接使用Series的绘图方法进行图像的绘制. pandas绘制图像其实也是给予matplotlib的绘图功能处理相应的数据,最终绘制出相应的曲线. 在图形对象创建并操作之后还需要调用matplotlib的图像显示方法才能够最终显示出绘制的图像. 编写代码如下: import pandas as pd from pandas import Series,DataFrame import numpy as
-
浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)
pandas为我们提供了多种切片方法,而要是不太了解这些方法,就会经常容易混淆.下面举例对这些切片方法进行说明. 数据介绍 先随机生成一组数据: In [5]: rnd_1 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_2 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_3 = [random.randrange(1,20) for x in xrange(1
-
pandas实现DataFrame显示最大行列,不省略显示实例
如下所示: import pandas as pd #显示所有列 pd.set_option('display.max_columns', None) #显示所有行 pd.set_options('display.max_rows', None) None可以写具体的数字,写多少就显示多少,默认是显示100行 import pandas as pd pd.set_option('display.height', 1000) pd.set_option('display.max_rows', 50
-
从列表或字典创建Pandas的DataFrame对象的方法
介绍 每当我使用pandas进行分析时,我的第一个目标是使用众多可用选项中的一个将数据导入Pandas的DataFrame . 对于绝大多数情况下,我使用的 read_excel , read_csv 或 read_sql . 但是,有些情况下我只需要几行数据或包含这些数据里的一些计算. 在这些情况下,了解如何从标准python列表或字典创建DataFrames会很有帮助. 基本过程并不困难,但因为有几种不同的选择,所以有助于理解每种方法的工作原理. 我永远记不住我是否应该使用 from_dic
-
详细介绍pandas的DataFrame的append方法使用
官方文档介绍链接:append方法介绍 DataFrame.append(other, ignore_index=False, verify_integrity=False, sort=None) 功能说明:向dataframe对象中添加新的行,如果添加的列名不在dataframe对象中,将会被当作新的列进行添加 other:DataFrame.series.dict.list这样的数据结构 ignore_index:默认值为False,如果为True则不使用index标签 verify_int
-
浅谈pandas中DataFrame关于显示值省略的解决方法
python的pandas库是一个非常好的工具,里面的DataFrame更是常用且好用,最近是越用越觉得设计的漂亮,pandas的很多细节设计的都非常好,有待使用过程中发掘. 好了,发完感慨,说一下最近DataFrame遇到的一个细节: 在使用DataFrame中有时候会遇到表格中的value显示不完全,像下面这样: In: import pandas as pd longString = u'''真正的科学家应当是个幻想家:谁不是幻想家,谁就只能把自己称为实践家.人生的磨难是很多的, 所以我们
-
python pandas中DataFrame类型数据操作函数的方法
python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几
随机推荐
- JavaScript中的索引数组、关联数组和静态数组、动态数组讲解
- 关键字排名(Keyword Ranking)
- Lua编程示例(五): C语言对Lua表的读取和添加
- JS实现可自定义大小,可双击关闭的弹出层效果
- asp.net coolite 删除时弹出确定按钮
- Android应用开发:电话监听和录音代码示例
- PHP封装的HttpClient类用法实例
- 深入apache host的配置详解
- PHP利用二叉堆实现TopK-算法的方法详解
- 浅谈谈Android 图片选择器
- mysql删除表中某一字段重复的记录
- BootStrap按钮标签及基本样式
- java LRU(Least Recently Used )详解及实例代码
- linux下pip的安装步骤及使用详解
- centos下yum搭建安装linux+apache+mysql+php环境教程
- android 获取手机GSM/CDMA信号信息,并获得基站信息的方法
- java反射获取一个object属性值代码解析
- 深入理解Python爬虫代理池服务
- 把JSON数据格式转换为Python的类对象方法详解(两种方法)
- java 将jsonarray 转化为对应键值的jsonobject方法