浅谈python数据类型及类型转换

Python中核心的数据类型有哪些?

变量(数字、字符串、元组、列表、字典)

什么是数据的不可变性?哪些数据类型具有不可变性

数据的不可变是指数据不可更改,比如:

 a = ("abc",123) #定义元组
 a[0]=234 #把第一位更改为345
 print(a) #打印时会报错

不可变:数字、字符、元组

可变:列表和字典

Python中常见数据类型

赋值

counter = 100
miles = 1000
name = "nan"
print(counter,miles,name)

a = b = c = 1
a,b,c=1,2,"nan"

两个数的值互换赋值有两种方法:一是引入第三个变量,二是如下
a,b = b,a

字符串

print("字符串,用的较多")
s = 'ilovepython'
print(s[0:5])
print(s[0:5] + 'nan')
print(s * 2)

列表

print("列表,用的较多")
list = ['abcd',123,2.23,678,"nan"]
tinylist = [123,"nan"]
print(list)
print(list[0])
print(list[1:3])
print(list[2:])
print(tinylist*2)
print(list+tinylist) #放在一个列表中

list = ["jia",3764]
list[1] = 'lala'
print(list)
列表转换为字符串:
list = ''.join(list)
print(type(list)) #现在显示为str类型 

如何把abcde字符串反转成edcba?
str = "abcde"
print(str[::-1])

元组

 print("元祖和列表类似,不同的是元祖用()表示,且不能进行二次赋值")
tuple = ("abcd",123,3.45)
# tuple[1]= 'nan' 元组中是非法应用

字典

print("字典")
dict = {'name':'nan','code':798,}
print(dict.keys())
print(dict.values())
print(dict.get("name","not found"))
print(dict.get("namet","not found")) #查找字典中key为namet的值,如果没有这个key打印 not found;如果有key值打印相应的value

常见数据类型转换

'''
int()
str()
list()
dict()
'''
a = 100
print('nan'+str(a))
stre = '1111'
print(int(stre))
'''
print(type(len(stre))) #len是int类型
print("打印长度"+str(len(stre)))
'''

取出下面list的指定元素

L = [
  ['GOOGLE', 'APPLE', 'LINUX'],
  ['Python', 'Java', 'PHP', 'C'],
  ['Jack', 'Tom', 'Peter']
]
print(L[0][0],L[1][1],L[2][2])
'''打印结果:GOOGLE Java Peter'''

总结

以上就是本文关于浅谈python数据类型及类型转换的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(0)

相关推荐

  • python数据类型_字符串常用操作(详解)

    这次主要介绍字符串常用操作方法及例子 1.python字符串 在python中声明一个字符串,通常有三种方法:在它的两边加上单引号.双引号或者三引号,如下: name = 'hello' name1 = "hello bei jing " name2 = '''hello shang hai haha''' python中的字符串一旦声明,是不能进行更改的,如下: #字符串为不可变变量,即不能通过对某一位置重新赋值改变内容 name = 'hello' name[0] = 'k' #通

  • 简单谈谈Python中的几种常见的数据类型

    计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值.但是,计算机能处理的远不止数值,还可以处理文本.图形.音频.视频.网页等各种各样的数据,不同的数据,需要定义不同的数据类型.在Python中,能够直接处理的数据类型有以下几种: 一.整数 Python可以处理任意大小的整数,当然包括负整数,在Python程序中,整数的表示方法和数学上的写法一模一样,例如:1,100,-8080,0,等等. 计算机由于使用二进制,所以,有时候用十六进制表示整数比较方便,十六进制用0

  • python数据类型_元组、字典常用操作方法(介绍)

    元组 Python的元组与列表类似,不同之处在于元组的元素不能修改. 元组使用小括号,列表使用方括号. 元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可. tp=(1,2,3,'a','b') a = 'hello world' #这样定义是str类型 b = ('hello world') #定义元组时,如果只有一个元素,那么b的类型就是str c = ('hello world',) print(type(c)) 元组只有count和index方法,如下: tp = ('127.0

  • python数据类型判断type与isinstance的区别实例解析

    在项目中,我们会在每个接口验证客户端传过来的参数类型,如果验证不通过,返回给客户端"参数错误"错误码. 这样做不但便于调试,而且增加健壮性.因为客户端是可以作弊的,不要轻易相信客户端传过来的参数. 验证类型用type函数,非常好用,比如 >>type('foo') == str True >>type(2.3) in (int,float) True 既然有了type()来判断类型,为什么还有isinstance()呢? 一个明显的区别是在判断子类. type(

  • 浅谈Python数据类型判断及列表脚本操作

    数据类型判断 在python(版本3.0以上)使用变量,并进行值比较时.有时候会出现以下错误: TypeError: unorderable types: NoneType() < int() 或者类似的类型错误. 这是因为一方变量的数据类型不明(python无法判断),所以出错. 在一般情况下,可以提前对要使用的变量进行定义并赋值,例如: var=' ' 或者 var=0 等等. 但是,若变量在比较前,是通过调用函数或者其他表达式赋值的,以上方法可能行不通,因为如果调用的函数如果存在错误或者没

  • python基础教程之五种数据类型详解

    Python 五种数据类型 在学习一门语言的过程中,首先肯定就是要先接触到它所拥有的数据类型,Python拥有五种主要的数据类型,下面介绍一下我对这五种数据类型的理解和想法. 1.数 在Python中的数主要分为四种:int(整数).float(浮点数).long(长整型)和complex(复数) 主要特别的地方就是float类型的数有一个函数round()可以取整:round(a,b):对float类型的数值a进行操作,小数点后保留b位有效数字,四舍五入,默认为1. complex类型也算是比

  • Python 对象中的数据类型

    对于python,一切事物都是对象,程序中存储的所有数据都是对象,对象基于类创建 计算机能处理的远不止数值,还可以处理文本.图形.音频.视频.网页等各种各样的数据,不同的数据,需要定义不同的数据类型. class 指自定义类型,type 指内置类型.两者都表示数据类型,称呼不同而已 每个对象都有一个身份.一个类型和一个值,身份指对象在内存中所处位置的指针(内存中的地址),内置函数id()可返回一个对象的身份.变量名就是引用这个具体位置的名称 实例化:创建特定类型的对象 实例被创建后,其身份和类型

  • Python变量和数据类型详解

    Python变量和数据类型 Python中数据类型 Python之print语句 Python的注释 Python中什么是变量 Python中定义字符串 Python中raw字符串与多行字符串 Python中Unicode字符串 Python中整数和浮点数 Python中布尔类型 Python中数据类型 计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值.但是,计算机能处理的远不止数值,还可以处理文本.图形.音频.视频.网页等各种各样的数据,不同的数据,需要定义不

  • 浅谈python数据类型及类型转换

    Python中核心的数据类型有哪些? 变量(数字.字符串.元组.列表.字典) 什么是数据的不可变性?哪些数据类型具有不可变性 数据的不可变是指数据不可更改,比如: a = ("abc",123) #定义元组 a[0]=234 #把第一位更改为345 print(a) #打印时会报错 不可变:数字.字符.元组 可变:列表和字典 Python中常见数据类型 赋值 counter = 100 miles = 1000 name = "nan" print(counter,

  • 浅谈Python数据类型之间的转换

    Python数据类型之间的转换 函数 描述 int(x [,base]) 将x转换为一个整数 long(x [,base] ) 将x转换为一个长整数 float(x) 将x转换到一个浮点数 complex(real [,imag]) 创建一个复数 str(x) 将对象 x 转换为字符串 repr(x) 将对象 x 转换为表达式字符串 eval(str) 用来计算在字符串中的有效Python表达式,并返回一个对象 tuple(s) 将序列 s 转换为一个元组 list(s) 将序列 s 转换为一个

  • 浅谈python数据类型及其操作

    一. Number 数字 1.内置函数:需要导入math 2.随机数函数:需要导入random 模块 3.三角函数:需要导入math模块 4.数学常量:需要导入math模块 #1.数据函数的使用 #========================== #内置函数 print(abs(-10)) #10绝对值 print(round(4.56789,2)) #4.57 使用四舍五入的方式保留小数点后两位 a = [10,30,20,80,50] print(max(a)) #80 最大值 prin

  • 浅谈python 四种数值类型(int,long,float,complex)

    Python支持四种不同的数值类型,包括int(整数)long(长整数)float(浮点实际值)complex (复数),本文章向码农介绍python 四种数值类型,需要的朋友可以参考一下. 数字数据类型存储数值.他们是不可改变的数据类型,这意味着改变数字数据类型的结果,在一个新分配的对象的值. Number对象被创建,当你给他们指派一个值.例如: var1 = 1 var2 = 10 您也可以删除数字对象的参考,使用del语句. del语句的语法是: del var1[,var2[,var3[

  • 浅谈python下tiff图像的读取和保存方法

    对比测试 scipy.misc 和 PIL.Image 和 libtiff.TIFF 三个库 输入: 1. (读取矩阵) 读入uint8.uint16.float32的lena.tif 2. (生成矩阵) 使用numpy产生随机矩阵,float64的mat import numpy as np from scipy import misc from PIL import Image from libtiff import TIFF # # 读入已有图像,数据类型和原图像一致 tif32 = mi

  • 浅谈python opencv对图像颜色通道进行加减操作溢出

    由于opencv读入图片数据类型是uint8类型,直接加减会导致数据溢出现象 (1)用Numpy操作 可以先将图片数据类型转换成int类型进行计算, data=np.array(image,dtype='int') 经过处理后(如:遍历,将大于255的置为255,小于0的置为0) 再将图片还原成uint8类型 data=np.array(image,dtype='uint8') 注意: (1)如果直接相加,那么 当像素值 > 255时,结果为对256取模的结果,例如:(240+66) % 256

  • 浅谈python中copy和deepcopy中的区别

    在下是个编程爱好者,最近将魔爪伸向了Python编程.....遇到copy和deepcopy感到很困惑,现在针对这两个方法进行区分,一种是浅复制(copy),一种是深度复制(deepcopy). 首先说一下deepcopy,所谓的深度复制,在这里我理解的是完全复制然后变成一个新的对象,复制的对象和被复制的对象没有任何关系,彼此之间无论怎么改变都相互不影响. 然后说一下copy,在这里我分为两类来说,一种是字典数据类型的copy函数,一种是copy包的copy函数. 一.字典数据类型的copy函数

  • 浅谈python for循环的巧妙运用(迭代、列表生成式)

    介绍 我们可以通过for循环来迭代list.tuple.dict.set.字符串,dict比较特殊dict的存储不是连续的,所以迭代(遍历)出来的值的顺序也会发生变化. 迭代(遍历) #!/usr/bin/env python3 #-*- coding:utf-8 -*- vlist=['a','b','c'] vtuple=('a','b','c') vdict={'a': 1, 'b': 2, 'c': 3} vset={'a','b','c'} vstr='abc' for x in vl

  • 浅谈python中的面向对象和类的基本语法

    当我发现要写python的面向对象的时候,我是踌躇满面,坐立不安呀.我一直在想:这个坑应该怎么爬?因为python中关于面向对象的内容很多,如果要讲透,最好是用面向对象的思想重新学一遍前面的内容.这个坑是如此之大,犹豫再三,还是只捡一下重要的内容来讲吧,不足的内容只能靠大家自己去补充了. 惯例声明一下,我使用的版本是 python2.7,版本之间可能存在差异. 好,在开讲之前,我们先思考一个问题,看代码: 为什么我只创建是为 a 赋值,就可以使用一些我没写过的方法? 可能会有小伙伴说:因为 a

随机推荐