OpenCV 模板匹配

最近小编实现一个微信小程序「跳一跳」的自动化。

主要涉及到了OpenCV的模板匹配和边缘检测技术,以及Android开发调试工具ADB。

如果放在一起说,感觉内容有些多。

所以,分三期来讲,也能多了解一些东西。

首先介绍模板匹配,然后边缘检测,最后结合ADB实现「跳一跳」自动化。

游戏虽然过时了,但是拿来练练手还是不错的。

编程就该是快乐的,哈哈。

/ 01 / 模板匹配

模板匹配,就是在整个图像区域里发现与给定子图像相匹配的小块区域。

这里需要一个模板图像(给定的子图像)和一个待检测的图像(原图像)。

在待检测图像上,从左向右,从上向下计算模板图像与重叠子图像的匹配度,匹配度越大,两者相同的可能性越大。

这里主要涉及OpenCV的cv2.matchTemplate()cv2.minMaxLoc()函数。

第一个函数作用是在模板和输入图像之间寻找匹配,获得匹配结果图像。

第二个函数的作用则是在给定的矩阵中寻找最大和最小值(包括它们的位置)。

其中模板匹配算法有以下六种。

# 第一类,利用平方差来进行匹配,最好匹配为0.匹配越差,匹配值越大
# 平方差匹配
method=CV_TM_SQDIFF
# 标准平方差匹配
method=CV_TM_SQDIFF_NORMED
# 第二类,采用模板和图像间的乘法操作,所以较大的数表示匹配程度较高,0标识最坏的匹配效果
# 相关匹配
method=CV_TM_CCORR
# 标准相关匹配
method=CV_TM_CCORR_NORMED
# 第三类,将模版对其均值的相对值与图像对其均值的相关值进行匹配,1表示完美匹配,-1表示糟糕的匹配,0表示没有任何相关性(随机序列)
# 相关系数匹配
method=CV_TM_CCOEFF
# 标准相关系数匹配
method=CV_TM_CCOEFF_NORMED

标准化意味着将数值统一到0~1。

除了平方差类型的是值越小越好,其他的都是值越大越好。

/ 02 / 图像检索

首先来看一下两张图像,都为灰度图。

import cv2
# 读取待检测图像
img = cv2.imread('game.png', 0)
# 读取模板图像
temple = cv2.imread('temple.png', 0)
# 显示灰度处理后的待检测图像
cv2.namedWindow('sample', 0)
cv2.resizeWindow('sample', 400, 600)
cv2.imshow('sample', img)
# 显示灰度处理后的模板图像
cv2.namedWindow('target', 0)
cv2.resizeWindow('target', 400, 600)
cv2.imshow('target', temple)

输出结果如下。

第一张为模板图像,第二张为待检测图像。

下面使用OpenCV的两个函数,来实现模板匹配。

# 获取模板图像的高和宽
th, tw = temple.shape[:2]
print(th, tw)
# 使用标准相关系数匹配,1表示完美匹配,-1表示糟糕的匹配,0表示没有任何相关性
result = cv2.matchTemplate(img, temple, cv2.TM_CCOEFF_NORMED)
# result为匹配结果矩阵
# print(result)
# TM_CCOEFF_NORMED方法处理后的结果图像
cv2.namedWindow('match_r', 0)
cv2.resizeWindow('match_r', 400, 600)
# 显示窗口
cv2.imshow('match_r', result)
# 使用函数minMaxLoc,确定匹配结果矩阵的最大值和最小值(val),以及它们的位置(loc)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
# 此处选取最大值的位置,为图像的左上角
tl = max_loc
# 获取图像的右下角
br = (tl[0]+tw, tl[1]+th)
# 绘制矩形框
cv2.rectangle(img, tl, br, (0, 0, 255), 2)
# 设置显示窗口
cv2.namedWindow('match', 0)
cv2.resizeWindow('match', 400, 600)
# 显示窗口
cv2.imshow('match', img)
# 结束
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下。

第一张图中最白的位置,即代表着最高的匹配。

第二张图中,矩形框则代表着匹配到的结果。

通过矩形框的位置参数,结合模板图像的大小,便可得到小跳棋中心点位置(底部)。

/ 03 / 总结

现在既然能检测到「跳一跳」小跳棋的位置,那么下一步就是方块的位置啦。

(0)

相关推荐

  • python opencv实现图像边缘检测

    本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤: 1.去噪 如cv2.GaussianBlur()等函数: 2.计算图像梯度 图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式: 3.非极大值抑制 在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点.对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的.如下图所示: 4.滞后阈值 现在要确定那些边界才是真正的

  • 利用C#版OpenCV实现圆心求取实例代码

    前言 OpenCVSharp是OpenCV的.NET wrapper,是一名日本工程师开发的,项目地址为:https://github.com/shimat/opencvsharp. 该源码是 BSD开放协议,BSD开源协议是一个给于使用者很大自由的协议.基本上使用者可以"为所欲为",可以自由的使用,修改源代码,也可以将修改后的代码作为开源或者专有软件再发布或商业化销售. 1.OpenCVSharp的下载 可以直接从上面的github上下载源码,自行编译引用: 也可用vs中的nuget

  • Python Opencv实现图像轮廓识别功能

    本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th

  • Java+opencv3.2.0实现模板匹配

    模板匹配是一项在一幅图像中寻找与另一幅模板图像最匹配(相似)部分的技术. 函数:Imgproc.matchTemplate(Mat image, Mat templ, Mat result, int method) 参数说明: image:源图像 templ:模板图像 result:比较结果 method:匹配算法 匹配算法: TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配:最好的匹配值为0:匹配越差,匹配值越大. TM_CCORR 相关匹配法:该方法采用乘法操作:数值越大表明匹配

  • 使用Python的OpenCV模块识别滑动验证码的缺口(推荐)

    最近终于找到一个好的方法,使用Python的OpenCV模块识别滑动验证码的缺口,可以将滑动验证码中的缺口识别出来了. 测试使用如下两张图片: target.jpg template.png 现在想要通过"template.png"在"target.jpg"中找到对应的缺口,代码实现如下: # encoding=utf8 import cv2 import numpy as np def show(name): cv2.imshow('Show', name) cv

  • python基于OpenCV模板匹配识别图片中的数字

    前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出"读取失败". 操作环境: OpenCV - 4.1.0 Python 3.8.1 程序目标 单个数字模板:(这些单个模板是我自己直接从图片上截取下来的) 要处理的图片: 终端输出: 文本输出: 思路讲解 代码讲解 首先定义两个会用到的函数 第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了 def cv_show(name, img): cv2.imsh

  • opencv模板匹配相同位置去除重复的框

    使用opencv自带的模板匹配 1.目标匹配函数:cv2.matchTemplate() res=cv2.matchTemplate(image, templ, method, result=None, mask=None) image:待搜索图像 templ:模板图像 result:匹配结果 method:计算匹配程度的方法,主要有以下几种: CV_TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配:最好的匹配值为0:匹配越差,匹配值越大. CV_TM_CCORR 相关匹配法:该方法

  • OpenCV 模板匹配

    最近小编实现一个微信小程序「跳一跳」的自动化. 主要涉及到了OpenCV的模板匹配和边缘检测技术,以及Android开发调试工具ADB. 如果放在一起说,感觉内容有些多. 所以,分三期来讲,也能多了解一些东西. 首先介绍模板匹配,然后边缘检测,最后结合ADB实现「跳一跳」自动化. 游戏虽然过时了,但是拿来练练手还是不错的. 编程就该是快乐的,哈哈. / 01 / 模板匹配 模板匹配,就是在整个图像区域里发现与给定子图像相匹配的小块区域. 这里需要一个模板图像(给定的子图像)和一个待检测的图像(原

  • OpenCV模板匹配matchTemplate的实现

    作用有局限性,必须在指定的环境下,才能匹配成功,是受到很多因素的影响,所以有一定的适应性 模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题. 它是图像处理中最基本.最常用的匹配方法. 模板匹配具有自身的局限性,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化,该算法无效. 模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域[/code] 工作原理:在待检测图像上,从左到右,从上向下计算模板图像与重

  • OpenCV半小时掌握基本操作之模板匹配

    目录 概述 模板匹配 案例一 案例二 [OpenCV]⚠️高手勿入! 半小时学会基本操作 ⚠️ 概述模板 概述 OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. (第 21 课) 模板匹配 模板匹配 (Template Matching) 和卷积的原理很像. 模板在原图像上从原点开始滑动, 计算模板与图片被模板覆盖的地方的差别程度. 格式: cv2.matchTemplate(image, templ, method, r

  • opencv C++模板匹配的简单实现

    目录 一简单实现 二函数及原理讲解 1matchTemplate()参数详解 2minMaxLoc()函数 一 简单实现 #include <opencv2/opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main() { Mat img = imread("52.jpg"); Mat templ = imread("templ.jpg")

  • OpenCV-Python模板匹配人眼的实例

    什么是模板匹配 模板匹配是指在当前图像A内寻找与图像B最相似的部分,可以理解找茬,但是这里是找出一样的信息. 一般我们将图像A称为输入图像,将图像B称为模板图像.模板匹配的原理就是将模板B图像在图像A上滑动遍历,找出与其匹配的部分. 模板匹配函数 在OpenCV中,它给我们提供了cv2.matchTemplate()函数来完成模板匹配.其函数的完整定义如下: def matchTemplate(image, templ, method, result=None, mask=None): imag

  • Python和OpenCV进行多尺度模板匹配实现

    目录 1. 效果图 2. 原理 3. 步骤 4. 源码 5. 参考 这篇博文将实现如何将标准模板匹配扩展到多尺度,从而使其更加健壮.使其可以处理模板和输入图像大小不同的匹配. 1. 效果图 模板匹配问题:对于模板和图像中不一致的情况,会发生错误检测. 如下图左侧模板小,右侧图像中大,虽然完全一致,只是大小不一样,却未被检测到. 优化:多尺度模板匹配,对于模板和图像中有平移和缩放的情况可以完美工作. 如下图: 多尺度模板匹配,gif 详细效果图: 2. 原理 使用cv2.matchTemplate

  • Python+Opencv实现图像匹配功能(模板匹配)

    本文实例为大家分享了Python+Opencv实现图像匹配功能的具体代码,供大家参考,具体内容如下 1.原理 简单来说,模板匹配就是拿一个模板(图片)在目标图片上依次滑动,每次计算模板与模板下方的子图的相似度,最后就计算出了非常多的相似度: 如果只是单个目标的匹配,那只需要取相似度最大值所在的位置就可以得出匹配位置: 如果要匹配多个目标,那就设定一个阈值,就是说,只要相似度大于比如0.8,就认为是要匹配的目标. 1.1 相似度度量指标 差值平方和匹配 CV_TM_SQDIFF 标准化差值平方和匹

  • python计算机视觉opencv图像金字塔轮廓及模板匹配

    目录 1.图像金字塔 ①高斯金字塔 ②拉普拉斯金字塔 2.图像轮廓 ①寻找轮廓 ②轮廓特征 ③轮廓绘制 3.模板匹配 ①模板匹配 ②匹配框线绘制 ③多对象匹配 4.直方图统计 ①直方图绘制 ②直方图统计 ③直方图的mask操作 ④直方图均衡化 5.傅里叶变换 1.图像金字塔 ①高斯金字塔 向下采样,数据会越来越少,减少的方式是:将偶数行和列删除 向上采样,数据会越来越多,将图像在每个方向上扩大为原来的两倍,新增的行和列用0来填充.使用先前同样的内核与放大后的图像卷积,获得近似值. 上采样之后,图

随机推荐