Python实现时间序列可视化的方法

时间序列数据在数据科学领域无处不在,在量化金融领域也十分常见,可以用于分析价格趋势,预测价格,探索价格行为等。

学会对时间序列数据进行可视化,能够帮助我们更加直观地探索时间序列数据,寻找其潜在的规律。

本文会利用Python中的matplotlib【1】库,并配合实例进行讲解。matplotlib库是一个用于创建出版质量图表的桌面绘图包(2D绘图库),是Python中最基本的可视化工具。

【工具】Python 3

【数据】Tushare

【注】示例注重的是方法的讲解,请大家灵活掌握。

1.单个时间序列

首先,我们从tushare.pro获取指数日线行情数据,并查看数据类型。

import tushare as ts
import pandas as pd
pd.set_option('expand_frame_repr', False) # 显示所有列
ts.set_token('your token')
pro = ts.pro_api()
df = pro.index_daily(ts_code='399300.SZ')[['trade_date', 'close']]
df.sort_values('trade_date', inplace=True)
df.reset_index(inplace=True, drop=True)
print(df.head())
 trade_date  close
0  20050104 982.794
1  20050105 992.564
2  20050106 983.174
3  20050107 983.958
4  20050110 993.879
print(df.dtypes)
trade_date   object
close     float64
dtype: object 

交易时间列'trade_date' 不是时间类型,而且也不是索引,需要先进行转化。

df['trade_date'] = pd.to_datetime(df['trade_date'])
df.set_index('trade_date', inplace=True)
print(df.head())
       close
trade_date
2005-01-04 982.794
2005-01-05 992.564
2005-01-06 983.174
2005-01-07 983.958
2005-01-10 993.879 

接下来,就可以开始画图了,我们需要导入matplotlib.pyplot【2】,然后通过设置set_xlabel()set_xlabel()为x轴和y轴添加标签。

import matplotlib.pyplot as plt
ax = df.plot(color='')
ax.set_xlabel('trade_date')
ax.set_ylabel('399300.SZ close')
plt.show()

matplotlib库中有很多内置图表样式可以选择,通过打印plt.style.available查看具体都有哪些选项,应用的时候直接调用plt.style.use('fivethirtyeight')即可。

print(plt.style.available)
['bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark-palette', 'seaborn-dark', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'seaborn', 'Solarize_Light2', 'tableau-colorblind10', '_classic_test']
 plt.style.use('fivethirtyeight')
ax1 = df.plot()
ax1.set_title('FiveThirtyEight Style')
plt.show()

2.设置更多细节

上面画出的是一个很简单的折线图,其实可以在plot()里面通过设置不同参数的值,为图添加更多细节,使其更美观、清晰。

figsize(width, height)设置图的大小,linewidth设置线的宽度,fontsize设置字体大小。然后,调用set_title()方法设置标题。

ax = df.plot(color='blue', figsize=(8, 3), linewidth=2, fontsize=6)
ax.set_title('399300.SZ close from 2005-01-04 to 2019-07-04', fontsize=8)
plt.show()

如果想要看某一个子时间段内的折线变化情况,可以直接截取该时间段再作图即可,如df['2018-01-01': '2019-01-01']

dfdf_subset_1 = df['2018-01-01':'2019-01-01']
ax = df_subset_1.plot(color='blue', fontsize=10) 

plt.show()

如果想要突出图中的某一日期或者观察值,可以调用.axvline()和.axhline()方法添加垂直和水平参考线。

ax = df.plot(color='blue', fontsize=6)
ax.axvline('2019-01-01', color='red', linestyle='--')
ax.axhline(3000, color='green', linestyle='--')
plt.show()

也可以调用axvspan()的方法为一段时间添加阴影标注,其中alpha参数设置的是阴影的透明度,0代表完全透明,1代表全色。

ax = df.plot(color='blue', fontsize=6)
ax.axvspan('2018-01-01', '2019-01-01', color='red', alpha=0.3)
ax.axhspan(2000, 3000, color='green', alpha=0.7)
plt.show()

3.移动平均时间序列

有时候,我们想要观察某个窗口期的移动平均值的变化趋势,可以通过调用窗口函数rolling来实现。下面实例中显示的是,以250天为窗口期的移动平均线close,以及与移动标准差的关系构建的上下两个通道线upper和lower。

ma = df.rolling(window=250).mean()
mstd = df.rolling(window=250).std()
ma['upper'] = ma['close'] + (mstd['close'] * 2)
ma['lower'] = ma['close'] - (mstd['close'] * 2)
ax = ma.plot(linewidth=0.8, fontsize=6)
ax.set_xlabel('trade_date', fontsize=8)
ax.set_ylabel('399300.SZ close from 2005-01-04 to 2019-07-04', fontsize=8)
ax.set_title('Rolling mean and variance of 399300.SZ cloe from 2005-01-04 to 2019-07-04', fontsize=10)
plt.show()

4.多个时间序列

如果想要可视化多个时间序列数据,同样可以直接调用plot()方法。示例中我们从tushare.pro上面选取三只股票的日线行情数据进行分析。

# 获取数据
code_list = ['000001.SZ', '000002.SZ', '600000.SH']
data_list = []
for code in code_list:
  print(code)
  df = pro.daily(ts_code=code, start_date='20180101', end_date='20190101')[['trade_date', 'close']]
  df.sort_values('trade_date', inplace=True)
  df.rename(columns={'close': code}, inplace=True)
  df.set_index('trade_date', inplace=True)
  data_list.append(df)
df = pd.concat(data_list, axis=1)
print(df.head())
000001.SZ
000002.SZ
600000.SH
      000001.SZ 000002.SZ 600000.SH
trade_date
20180102    13.70   32.56   12.72
20180103    13.33   32.33   12.66
20180104    13.25   33.12   12.66
20180105    13.30   34.76   12.69
20180108    12.96   35.99   12.68
# 画图
ax = df.plot(linewidth=2, fontsize=12)
ax.set_xlabel('trade_date')
ax.legend(fontsize=15)
plt.show()

调用.plot.area()方法可以生成时间序列数据的面积图,显示累计的总数。

ax = df.plot.area(fontsize=12)
ax.set_xlabel('trade_date')
ax.legend(fontsize=15)
plt.show()

如果想要在不同子图中单独显示每一个时间序列,可以通过设置参数subplots=True来实现。layout指定要使用的行列数,sharex和sharey用于设置是否共享行和列,colormap='viridis' 为每条线设置不同的颜色。

df.plot(subplots=True,
     layout=(2, 2),
     sharex=False,
     sharey=False,
     colormap='viridis',
     fontsize=7,
     legend=False,
     linewidth=0.3)
plt.show()

5.总结

本文主要介绍了如何利用Python中的matplotlib库对时间序列数据进行一些简单的可视化操作,包括可视化单个时间序列并设置图中的细节,可视化移动平均时间序列和多个时间序列。

以上所述是小编给大家介绍的Python实现时间序列可视化的方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • 利用Python进行数据可视化常见的9种方法!超实用!

    前言 如同艺术家们用绘画让人们更贴切的感知世界,数据可视化也能让人们更直观的传递数据所要表达的信息. 我们今天就分享一下如何用 Python 简单便捷的完成数据可视化. 其实利用 Python 可视化数据并不是很麻烦,因为 Python 中有两个专用于可视化的库 matplotlib 和 seaborn 能让我们很容易的完成任务. Matplotlib:基于Python的绘图库,提供完全的 2D 支持和部分 3D 图像支持.在跨平台和互动式环境中生成高质量数据时,matplotlib 会很有帮助

  • python时间序列按频率生成日期的方法

    有时候我们的数据是按某个频率收集的,比如每日.每月.每15分钟,那么我们怎么产生对应频率的索引呢?pandas中的date_range可用于生成指定长度的DatetimeIndex. 我们先看一下怎么生成日期范围:pd.date_range(startdate,enddate) 1.生成指定开始日期和结束日期的时间范围: In:import pandas as pd index = pd.date_range('4/1/2019','5/1/2019') print(index) Out: Da

  • Python中利用LSTM模型进行时间序列预测分析的实现

    时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的. 举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化:根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等 RNN 和 LSTM 模型 时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural n

  • python时间日期函数与利用pandas进行时间序列处理详解

    python标准库包含于日期(date)和时间(time)数据的数据类型,datetime.time以及calendar模块会被经常用到. datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差. 下面我们先简单的了解下python日期和时间数据类型及工具 给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象 from datetime import datetime from datetime impo

  • 利用Python绘制MySQL数据图实现数据可视化

    本教程的所有Python代码可以在网上的IPython notebook中获取. 考虑在公司里使用Plotly?可以看一下Plotly的on-premises企业版.(注:On-premises是指软件运行在工作场所或公司内部,详见维基百科) 注意操作系统:尽管Windows或Mac用户也可以跟随本文操作,但本文假定你使用的是Ubuntu系统(Ubuntu桌面版或Ubuntu服务器版).如果你没有Ubuntu Server,你可以通过Amazon的Web服务建立一个云平台(阅读这份教程的前半部分

  • 以911新闻为例演示Python实现数据可视化的教程

    本文介绍一个将911袭击及后续影响相关新闻文章的主题可视化的项目.我将介绍我的出发点,实现的技术细节和我对一些结果的思考. 简介 近代美国历史上再没有比911袭击影响更深远的事件了,它的影响在未来还会持续.从事件发生到现在,成千上万主题各异的文章付梓.我们怎样能利用数据科学的工具来探索这些主题,并且追踪它们随着时间的变化呢? 灵感 首先提出这个问题的是一家叫做Local Projects的公司,有人委任它们为纽约的国家911博物馆设置一个展览.他们的展览,Timescape,将事件的主题和文章可

  • python Pandas库基础分析之时间序列的处理详解

    前言 在使用Python进行数据分析时,经常会遇到时间日期格式处理和转换,特别是分析和挖掘与时间相关的数据,比如量化交易就是从历史数据中寻找股价的变化规律.Python中自带的处理时间的模块有datetime,NumPy库也提供了相应的方法,Pandas作为Python环境下的数据分析库,更是提供了强大的日期数据处理的功能,是处理时间序列的利器. 1.生成日期序列 主要提供pd.data_range()和pd.period_range()两个方法,给定参数有起始时间.结束时间.生成时期的数目及时

  • python pandas 对时间序列文件处理的实例

    如下所示: import pandas as pd from numpy import * import matplotlib.pylab as plt import copy def read(filename): dat=pd.read_csv(filename,iterator=True) loop = True chunkSize = 1000000 R=[] while loop: try: data = dat.get_chunk(chunkSize) data=data.loc[:

  • python+pandas+时间、日期以及时间序列处理方法

    先简单的了解下日期和时间数据类型及工具 python标准库包含于日期(date)和时间(time)数据的数据类型,datetime.time以及calendar模块会被经常用到. datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差. 给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象 from datetime import datetime from datetime import timedel

  • Python时间序列处理之ARIMA模型的使用讲解

    ARIMA模型 ARIMA模型的全称是自回归移动平均模型,是用来预测时间序列的一种常用的统计模型,一般记作ARIMA(p,d,q). ARIMA的适应情况 ARIMA模型相对来说比较简单易用.在应用ARIMA模型时,要保证以下几点: 时间序列数据是相对稳定的,总体基本不存在一定的上升或者下降趋势,如果不稳定可以通过差分的方式来使其变稳定. 非线性关系处理不好,只能处理线性关系 判断时序数据稳定 基本判断方法:稳定的数据,总体上是没有上升和下降的趋势的,是没有周期性的,方差趋向于一个稳定的值. A

  • 利用Python代码实现数据可视化的5种方法详解

    前言 数据科学家并不逊色于艺术家.他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解.更有趣的是,一旦接触到任何可视化的内容.数据时,人类会有更强烈的知觉.认知和交流. 数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型.高维数据集.在项目结束时,以清晰.简洁和引人注目的方式展现最终结果是非常

随机推荐