python实现各种插值法(数值分析)

一维插值

插值不同于拟合。插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过。常见插值方法有拉格朗日插值法、分段插值法、样条插值法

  • 拉格朗日插值多项式:当节点数n较大时,拉格朗日插值多项式的次数较高,可能出现不一致的收敛情况,而且计算复杂。随着样点增加,高次插值会带来误差的震动现象称为龙格现象。
  • 分段插值:虽然收敛,但光滑性较差。
  • 样条插值:样条插值是使用一种名为样条的特殊分段多项式进行插值的形式。由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项式所出现的龙格现象,所以样条插值得到了流行。
# -*-coding:utf-8 -*-
import numpy as np
from scipy import interpolate
import pylab as pl

x=np.linspace(0,10,11)
#x=[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
y=np.sin(x)
xnew=np.linspace(0,10,101)
pl.plot(x,y,"ro")

for kind in ["nearest","zero","slinear","quadratic","cubic"]:#插值方式
 #"nearest","zero"为阶梯插值
 #slinear 线性插值
 #"quadratic","cubic" 为2阶、3阶B样条曲线插值
 f=interpolate.interp1d(x,y,kind=kind)
 # ‘slinear', ‘quadratic' and ‘cubic' refer to a spline interpolation of first, second or third order)
 ynew=f(xnew)
 pl.plot(xnew,ynew,label=str(kind))
pl.legend(loc="lower right")
pl.show()

结果:

二维插值

方法与一维数据插值类似,为二维样条插值。

# -*- coding: utf-8 -*-
"""
演示二维插值。
"""
import numpy as np
from scipy import interpolate
import pylab as pl
import matplotlib as mpl

def func(x, y):
 return (x+y)*np.exp(-5.0*(x**2 + y**2))

# X-Y轴分为15*15的网格
y,x= np.mgrid[-1:1:15j, -1:1:15j]

fvals = func(x,y) # 计算每个网格点上的函数值 15*15的值
print len(fvals[0])

#三次样条二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')

# 计算100*100的网格上的插值
xnew = np.linspace(-1,1,100)#x
ynew = np.linspace(-1,1,100)#y
fnew = newfunc(xnew, ynew)#仅仅是y值 100*100的值

# 绘图
# 为了更明显地比较插值前后的区别,使用关键字参数interpolation='nearest'
# 关闭imshow()内置的插值运算。
pl.subplot(121)
im1=pl.imshow(fvals, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower")#pl.cm.jet
#extent=[-1,1,-1,1]为x,y范围 favals为
pl.colorbar(im1)

pl.subplot(122)
im2=pl.imshow(fnew, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower")
pl.colorbar(im2)
pl.show()

左图为原始数据,右图为二维插值结果图。

二维插值的三维展示方法

# -*- coding: utf-8 -*-
"""
演示二维插值。
"""
# -*- coding: utf-8 -*-
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mpl
from scipy import interpolate
import matplotlib.cm as cm
import matplotlib.pyplot as plt

def func(x, y):
 return (x+y)*np.exp(-5.0*(x**2 + y**2))

# X-Y轴分为20*20的网格
x = np.linspace(-1, 1, 20)
y = np.linspace(-1,1,20)
x, y = np.meshgrid(x, y)#20*20的网格数据

fvals = func(x,y) # 计算每个网格点上的函数值 15*15的值

fig = plt.figure(figsize=(9, 6))
#Draw sub-graph1
ax=plt.subplot(1, 2, 1,projection = '3d')
surf = ax.plot_surface(x, y, fvals, rstride=2, cstride=2, cmap=cm.coolwarm,linewidth=0.5, antialiased=True)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('f(x, y)')
plt.colorbar(surf, shrink=0.5, aspect=5)#标注

#二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')#newfunc为一个函数

# 计算100*100的网格上的插值
xnew = np.linspace(-1,1,100)#x
ynew = np.linspace(-1,1,100)#y
fnew = newfunc(xnew, ynew)#仅仅是y值 100*100的值 np.shape(fnew) is 100*100
xnew, ynew = np.meshgrid(xnew, ynew)
ax2=plt.subplot(1, 2, 2,projection = '3d')
surf2 = ax2.plot_surface(xnew, ynew, fnew, rstride=2, cstride=2, cmap=cm.coolwarm,linewidth=0.5, antialiased=True)
ax2.set_xlabel('xnew')
ax2.set_ylabel('ynew')
ax2.set_zlabel('fnew(x, y)')
plt.colorbar(surf2, shrink=0.5, aspect=5)#标注

plt.show()

左图的二维数据集的函数值由于样本较少,会显得粗糙。而右图对二维样本数据进行三次样条插值,拟合得到更多数据点的样本值,绘图后图像明显光滑多了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python实现的拉格朗日插值法示例

    本文实例讲述了Python实现的拉格朗日插值法.分享给大家供大家参考,具体如下: 拉格朗日插值简单介绍 拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法. 许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个简单函数,其恰好在各个现测的点取到观测到的值,这个函数可以是代数多项式,三角多项式等. 完整Python示例: # -*- coding:utf-8 -*- #拉格朗日

  • python使用插值法画出平滑曲线

    本文实例为大家分享了python使用插值法画出平滑曲线的具体代码,供大家参考,具体内容如下 实现所需的库 numpy.scipy.matplotlib 实现所需的方法 插值 nearest:最邻近插值法 zero:阶梯插值 slinear:线性插值 quadratic.cubic:2.3阶B样条曲线插值 拟合和插值的区别 简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点. 拟合是通过原有数据,调整曲线系数,使得曲线与已知点集的差别(最小二乘)最小,最后生成的曲线不一定经过原有点

  • python利用插值法对折线进行平滑曲线处理

    在用python绘图的时候,经常由于数据的原因导致画出来的图折线分界过于明显,因此需要对原数据绘制的折线进行平滑处理,本文介绍利用插值法进行平滑曲线处理: 实现所需的库 numpy.scipy.matplotlib 插值法实现 nearest:最邻近插值法 zero:阶梯插值 slinear:线性插值 quadratic.cubic:2.3阶B样条曲线插值 - 拟合和插值的区别 1.插值:简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点. 2拟合:拟合是通过原有数据,调整曲线系

  • python用插值法绘制平滑曲线

    本文实例为大家分享了python用插值法绘制平滑曲线的具体代码,供大家参考,具体内容如下 原图: 平滑处理后: 代码实现如下: # 1. 随机构造数据 import numpy as np x = range(10) y = np.random.randint(10,size=10) # 2. 绘制原图 import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline # jupyter notebook显示绘

  • python实现各种插值法(数值分析)

    一维插值 插值不同于拟合.插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过.常见插值方法有拉格朗日插值法.分段插值法.样条插值法. 拉格朗日插值多项式:当节点数n较大时,拉格朗日插值多项式的次数较高,可能出现不一致的收敛情况,而且计算复杂.随着样点增加,高次插值会带来误差的震动现象称为龙格现象. 分段插值:虽然收敛,但光滑性较差. 样条插值:样条插值是使用一种名为样条的特殊分段多项式进行插值的形式.由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项

  • 用Python实现Newton插值法

    1. n阶差商实现 def diff(xi,yi,n): """ param xi:插值节点xi param yi:插值节点yi param n: 求几阶差商 return: n阶差商 """ if len(xi) != len(yi): #xi和yi必须保证长度一致 return else: diff_quot = [[] for i in range(n)] for j in range(1,n+1): if j == 1: for i in

  • 详解Python牛顿插值法

    一.牛顿多项式 拉格朗日多项式的公式不具备递推性,每个多项式需要单独构造.但很多时候我们需要从若干个逼近多项式选择一个.这个时候我们就需要一个具有递推关系的方法来构造--牛顿多项式 这里的的a0,a1-等可以通过逐一带入点的值来求得.但是当项数多起来时,会发现式子变得很大,这个时候我们便要引入差商的概念(利用差分思想)具体见式子能更好理解 这里在编程实现中我们可以推出相应的差商推导方程 d(k,0)=y(k) d(k,j)=(d(k,j-1)-d(k-1,j-1)) / (x(k)-x(k-j)

  • 教你如何利用python进行数值分析

    一.准备 噪声是在拟合过程中常用的干扰手段,常用的噪声: 1.统一分布 U(a,b) f ( x ) = { 1 i f a ≤ x < b 0 o t h e r f(x)=\begin{cases}\begin{aligned}1&\quad if\quad a\le x<b \\ 0&\quad other\end{aligned}\end{cases} f(x)={10​ifa≤x<bother​​ import numpy as np x=np.random.u

  • Python光学仿真数值分析求解波动方程绘制波包变化图

    波动方程数值解 波动方程是三大物理方程之一,也就是弦振动方程,其特点是时间与空间均为二阶偏导数.其自由空间解便是我们熟知的三角函数形式,也可以写成自然虚指数形式. 一般来说,既然有了精确的解析解,那也就没必要再去做不精确的数值模拟,但数值模拟的好处有两个,一是避免无穷小,从而在思维上更加直观:二是颇具启发性,对于一些解析无解的情况也有一定的处理能力. 对此,我们首先考虑一维波动方程 import numpy as np import matplotlib.pyplot as plt def se

  • python通过opencv实现批量剪切图片

    上一篇文章中,我们介绍了python实现图片处理和特征提取详解,这里我们再来看看Python通过OpenCV实现批量剪切图片,具体如下. 做图像处理需要大批量的修改图片尺寸来做训练样本,为此本程序借助opencv来实现大批量的剪切图片. import cv2 import os def cutimage(dir,suffix): for root,dirs,files in os.walk(dir): for file in files: filepath = os.path.join(root

随机推荐