tensorflow实现softma识别MNIST

识别MNIST已经成了深度学习的hello world,所以每次例程基本都会用到这个数据集,这个数据集在tensorflow内部用着很好的封装,因此可以方便地使用。

这次我们用tensorflow搭建一个softmax多分类器,和之前搭建线性回归差不多,第一步是通过确定变量建立图模型,然后确定误差函数,最后调用优化器优化。

误差函数与线性回归不同,这里因为是多分类问题,所以使用了交叉熵。

另外,有一点值得注意的是,这里构建模型时我试图想拆分多个函数,但是后来发现这样做难度很大,因为图是在规定变量就已经定义好的,不能随意拆分,也不能当做变量传来传去,因此需要将他们写在一起。

代码如下:

#encoding=utf-8
__author__ = 'freedom'
import tensorflow as tf 

def loadMNIST():
 from tensorflow.examples.tutorials.mnist import input_data
 mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
 return mnist 

def softmax(mnist,rate=0.01,batchSize=50,epoch=20):
 n = 784 # 向量的维度数目
 m = None # 样本数,这里可以获取,也可以不获取
 c = 10 # 类别数目 

 x = tf.placeholder(tf.float32,[m,n])
 y = tf.placeholder(tf.float32,[m,c]) 

 w = tf.Variable(tf.zeros([n,c]))
 b = tf.Variable(tf.zeros([c])) 

 pred= tf.nn.softmax(tf.matmul(x,w)+b)
 loss = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred),reduction_indices=1))
 opt = tf.train.GradientDescentOptimizer(rate).minimize(loss) 

 init = tf.initialize_all_variables() 

 sess = tf.Session()
 sess.run(init)
 for index in range(epoch):
  avgLoss = 0
  batchNum = int(mnist.train.num_examples/batchSize)
  for batch in range(batchNum):
   batch_x,batch_y = mnist.train.next_batch(batchSize)
   _,Loss = sess.run([opt,loss],{x:batch_x,y:batch_y})
   avgLoss += Loss
  avgLoss /= batchNum
  print 'every epoch average loss is ',avgLoss 

 right = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
 accuracy = tf.reduce_mean(tf.cast(right,tf.float32))
 print 'Accracy is ',sess.run(accuracy,({x:mnist.test.images,y:mnist.test.labels})) 

if __name__ == "__main__":
 mnist = loadMNIST()
 softmax(mnist) 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • tensorflow实现KNN识别MNIST
  • TensorFlow实现Softmax回归模型
  • Python下的Softmax回归函数的实现方法(推荐)
(0)

相关推荐

  • Python下的Softmax回归函数的实现方法(推荐)

    Softmax回归函数是用于将分类结果归一化.但它不同于一般的按照比例归一化的方法,它通过对数变换来进行归一化,这样实现了较大的值在归一化过程中收益更多的情况. Softmax公式 Softmax实现方法1 import numpy as np def softmax(x): """Compute softmax values for each sets of scores in x.""" pass # TODO: Compute and re

  • tensorflow实现KNN识别MNIST

    KNN算法算是最简单的机器学习算法之一了,这个算法最大的特点是没有训练过程,是一种懒惰学习,这种结构也可以在tensorflow实现. KNN的最核心就是距离度量方式,官方例程给出的是L1范数的例子,我这里改成了L2范数,也就是我们常说的欧几里得距离度量,另外,虽然是叫KNN,意思是选取k个最接近的元素来投票产生分类,但是这里只是用了最近的那个数据的标签作为预测值了. __author__ = 'freedom' import tensorflow as tf import numpy as n

  • TensorFlow实现Softmax回归模型

    一.概述及完整代码 对MNIST(MixedNational Institute of Standard and Technology database)这个非常简单的机器视觉数据集,Tensorflow为我们进行了方便的封装,可以直接加载MNIST数据成我们期望的格式.本程序使用Softmax Regression训练手写数字识别的分类模型. 先看完整代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist imp

  • tensorflow实现softma识别MNIST

    识别MNIST已经成了深度学习的hello world,所以每次例程基本都会用到这个数据集,这个数据集在tensorflow内部用着很好的封装,因此可以方便地使用. 这次我们用tensorflow搭建一个softmax多分类器,和之前搭建线性回归差不多,第一步是通过确定变量建立图模型,然后确定误差函数,最后调用优化器优化. 误差函数与线性回归不同,这里因为是多分类问题,所以使用了交叉熵. 另外,有一点值得注意的是,这里构建模型时我试图想拆分多个函数,但是后来发现这样做难度很大,因为图是在规定变量

  • 基于TensorFlow的CNN实现Mnist手写数字识别

    本文实例为大家分享了基于TensorFlow的CNN实现Mnist手写数字识别的具体代码,供大家参考,具体内容如下 一.CNN模型结构 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积:感受视野5*5,步长为1,卷积核:64个 第二层池化:池化视野2*2,步长为2 全连接层:设置1024个神经元 输出层:0~9十个数字类别 二.代码实现 import tensorflow as tf #Tensorfl

  • tensorflow基于CNN实战mnist手写识别(小白必看)

    很荣幸您能看到这篇文章,相信通过标题打开这篇文章的都是对tensorflow感兴趣的,特别是对卷积神经网络在mnist手写识别这个实例感兴趣.不管你是什么基础,我相信,你在看完这篇文章后,都能够完全理解这个实例.这对于神经网络入门的小白来说,简直是再好不过了. 通过这篇文章,你能够学习到 tensorflow一些方法的用法 mnist数据集的使用方法以及下载 CNN卷积神经网络具体python代码实现 CNN卷积神经网络原理 模型训练.模型的保存和载入 Tensorflow实战mnist手写数字

  • 详解如何用TensorFlow训练和识别/分类自定义图片

    很多正在入门或刚入门TensorFlow机器学习的同学希望能够通过自己指定图片源对模型进行训练,然后识别和分类自己指定的图片.但是,在TensorFlow官方入门教程中,并无明确给出如何把自定义数据输入训练模型的方法.现在,我们就参考官方入门课程<Deep MNIST for Experts>一节的内容(传送门:https://www.tensorflow.org/get_started/mnist/pros),介绍如何将自定义图片输入到TensorFlow的训练模型. 在<Deep M

  • 使用TensorFlow直接获取处理MNIST数据方式

    MNIST是一个非常有名的手写体数字识别数据集,TensorFlow对MNIST数据集做了封装,可以直接调用.MNIST数据集包含了60000张图片作为训练数据,10000张图片作为测试数据,每一张图片都代表了0-9中的一个数字,图片大小都是28*28.虽然这个数据集只提供了训练和测试数据,但是为了验证训练网络的效果,一般从训练数据中划分出一部分数据作为验证数据,测试神经网络模型在不同参数下的效果.TensorFlow提供了一个类来处理MNIST数据. 代码如下: from tensorflow

  • python使用tensorflow深度学习识别验证码

    本文介绍了python使用tensorflow深度学习识别验证码 ,分享给大家,具体如下: 除了传统的PIL包处理图片,然后用pytessert+OCR识别意外,还可以使用tessorflow训练来识别验证码. 此篇代码大部分是转载的,只改了很少地方. 代码是运行在linux环境,tessorflow没有支持windows的python 2.7. gen_captcha.py代码. #coding=utf-8 from captcha.image import ImageCaptcha # pi

  • tensorflow使用CNN分析mnist手写体数字数据集

    本文实例为大家分享了tensorflow使用CNN分析mnist手写体数字数据集,供大家参考,具体内容如下 import tensorflow as tf import numpy as np import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_da

  • caffe的python接口之手写数字识别mnist实例

    目录 引言 一.数据准备 二.导入caffe库,并设定文件路径 二.生成配置文件 三.生成参数文件solver 四.开始训练模型 五.完成的python文件 引言 深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 视觉层及参数 solver配置文件及参数 一.数据准备 官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片.因此有些

  • python tensorflow学习之识别单张图片的实现的示例

    假设我们已经安装好了tensorflow. 一般在安装好tensorflow后,都会跑它的demo,而最常见的demo就是手写数字识别的demo,也就是mnist数据集. 然而我们仅仅是跑了它的demo而已,可能很多人会有和我一样的想法,如果拿来一张数字图片,如何应用我们训练的网络模型来识别出来,下面我们就以mnist的demo来实现它. 1.训练模型 首先我们要训练好模型,并且把模型model.ckpt保存到指定文件夹 saver = tf.train.Saver() saver.save(s

随机推荐