Python numpy 提取矩阵的某一行或某一列的实例
如下所示:
import numpy as np a=np.arange(9).reshape(3,3)
a Out[31]: array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
矩阵的某一行
a[1] Out[32]: array([3, 4, 5])
矩阵的某一列
a[:,1] Out[33]: array([1, 4, 7])
b=np.eye(3,3) b Out[36]: array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]])
把矩阵a的第2列赋值给矩阵b的第1列
b[:,0]=a[:,1] b Out[38]: array([[ 1., 0., 0.], [ 4., 1., 0.], [ 7., 0., 1.]])
以上这篇Python numpy 提取矩阵的某一行或某一列的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
您可能感兴趣的文章:
- Python矩阵常见运算操作实例总结
- Python表示矩阵的方法分析
- Python获取二维矩阵每列最大值的方法
- Python实现矩阵转置的方法分析
- matlab中实现矩阵删除一行或一列的方法
- python中返回矩阵的行列方法
相关推荐
-
Python表示矩阵的方法分析
本文实例讲述了Python表示矩阵的方法.分享给大家供大家参考,具体如下: 在c语言中,表示个"整型3行4列"的矩阵,可以这样声明:int a[3][4];在python中一不能声明变量int,二不能列出维数.可以利用列表中夹带列表形式表示.例如: 表示矩阵 ,可以这样: count = 1 a = [] for i in range(0, 3): tmp = [] for j in range(0, 3): tmp.append(count) count += 1 a.append
-
python中返回矩阵的行列方法
实例如下所示: # TODO 返回矩阵的行数和列数 def shape(M): return len(M),len(M[0]) 以上这篇python中返回矩阵的行列方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python numpy 提取矩阵的某一行或某一列的实例 Python矩阵常见运算操作实例总结 Python表示矩阵的方法分析 Python获取二维矩阵每列最大值的方法 Python实现矩阵转置的方法分析 matlab中实现矩阵删
-
Python矩阵常见运算操作实例总结
本文实例讲述了Python矩阵常见运算操作.分享给大家供大家参考,具体如下: python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包. 一.numpy的导入和使用 from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头. 二.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=ma
-
Python获取二维矩阵每列最大值的方法
因为做项目中间有一个很小的环节需要这个功能,所以就写了一个简单的小函数,下面是具体实现: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 ''' def get_max_value(martix): ''' 得到矩阵中每一列最大的值 ''' res_list=[] for j in range(len(martix[0])): one_list=[] for i in range(len(martix)): one_list.ap
-
Python实现矩阵转置的方法分析
本文实例讲述了Python实现矩阵转置的方法.分享给大家供大家参考,具体如下: 前几天群里有同学提出了一个问题:手头现在有个列表,列表里面两个元素,比如[1, 2],之后不断的添加新的列表,往原来相应位置添加.例如添加[3, 4]使原列表扩充为[[1, 3], [2, 4]],再添加[5, 6]扩充为[[1, 3, 5], [2, 4, 6]]等等. 其实不动脑筋的话,用个二重循环很容易写出来: def trans(m): a = [[] for i in m[0]] for i in m: f
-
matlab中实现矩阵删除一行或一列的方法
实例如下所示: >> A=[1,2,3;4,5,6;7,8,9] A = 1 2 3 4 5 6 7 8 9 删除行: >> A(2,:)=[] A = 1 2 3 7 8 9 删除列: >> A(:,2)=[] A = 1 3 7 9 以上这篇matlab中实现矩阵删除一行或一列的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python numpy 提取矩阵的某一行或某一列的实例 Python矩阵常见运算操
-
Python numpy 提取矩阵的某一行或某一列的实例
如下所示: import numpy as np a=np.arange(9).reshape(3,3) a Out[31]: array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) 矩阵的某一行 a[1] Out[32]: array([3, 4, 5]) 矩阵的某一列 a[:,1] Out[33]: array([1, 4, 7]) b=np.eye(3,3) b Out[36]: array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0.,
-
Python+numpy实现矩阵的行列扩展方式
对于numpy矩阵,行列扩展有三种比较常用的方法: 1.使用矩阵对象的c_方法扩展列,使用矩阵对象的r_方法扩展行. 2.使用numpy扩展库提供的insert()函数,使用axis参数指定行或列. 3.使用numpy扩展库的row_stack()函数扩展行,column_stack()函数扩展列. 以上这篇Python+numpy实现矩阵的行列扩展方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
详解Python NumPy中矩阵和通用函数的使用
目录 一.创建矩阵 二.从已有矩阵创建新矩阵 三.通用函数 四.算术运算 在NumPy中,矩阵是 ndarray 的子类,与数学概念中的矩阵一样,NumPy中的矩阵也是二维的,可以使用 mat . matrix 以及 bmat 函数来创建矩阵. 一.创建矩阵 mat 函数创建矩阵时,若输入已为 matrix 或 ndarray 对象,则不会为它们创建副本. 因此,调用 mat() 函数和调用 matrix(data, copy=False) 等价. 1) 在创建矩阵的专用字符串中,矩阵的行与行之
-
numpy中的delete删除数组整行和整列的实例
numpy的delete是可以删除数组的整行和整列的,下面简单介绍和举例说明delete函数用法: numpy.delete(arr, obj, axis=None) 参数: arr:输入数组 obj:切片,整数,表示哪个子数组要被移除 axis:删除子数组的轴 axis = 0:表示删除数组的行 axis = 1:表示删除数组的列 axis = None:表示把数组按一维数组平铺在进行索引删除 返回:一个新的子数组 x = array([[1,2,3], [4,5,6], [7,8,9]])
-
Python numpy中矩阵的基本用法汇总
Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的matrix与MATLAB中matrices等价. 直接看一个例子: import numpy as np a = np.mat('1 3;5 7')
-
python 矩阵增加一行或一列的实例
矩阵增加行 np.row_stack() 与 np.column_stack() import numpy as np a = np.array([[4, 4,], [5, 5]]) c = np.row_stack((a, [8,9])) d = np.column_stack((a, [8,9])) 以上这篇python 矩阵增加一行或一列的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python编程给numpy矩阵添加一列方法示
-
Python 如何求矩阵的逆
我就废话不多说了,大家还是直接看代码吧~ import numpy as np kernel = np.array([1, 1, 1, 2]).reshape((2, 2)) print(kernel) print(np.linalg.inv(kernel)) 注意,Singular matrix奇异矩阵不可求逆 补充:python+numpy中矩阵的逆和伪逆的区别 定义: 对于矩阵A,如果存在一个矩阵B,使得AB=BA=E,其中E为与A,B同维数的单位阵,就称A为可逆矩阵(或者称A可逆),并称
-
Python Numpy实现计算矩阵的均值和标准差详解
目录 一.前言 二.详解计算均值和标准差 三.实践:CRITIC权重法计算变异系数 一.前言 CRITIC权重法是一种比熵权法和标准离差法更好的客观赋权法: 它是基于评价指标的对比强度和指标之间的冲突性来综合衡量指标的客观权重.考虑指标变异性大小的同时兼顾指标之间的相关性,并非数字越大就说明越重要,完全利用数据自身的客观属性进行科学评价. 对比强度是指同一个指标各个评价方案之间取值差距的大小,以标准差的形式来表现.标准差越大,说明波动越大,即各方案之间的取值差距越大,权重会越高: 指标之间的冲突
-
基于Python Numpy的数组array和矩阵matrix详解
NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵
随机推荐
- thinkphp中的多表关联查询的实例详解
- java解析xml之dom4j解析xml示例分享
- SpringBoot使用自定义注解实现权限拦截的示例
- 简单介绍Python中的len()函数的使用
- JSP实现浏览器关闭cookies情况下的会话管理
- jquery 操作iframe的几种方法总结
- jQuery 1.8 Release版本发布了
- JS实现兼容各浏览器解析XML文档数据的方法
- Document 对象的常用方法
- javascript读取xml
- 用headjs来管理和加载js 提高网站加载速度
- 详解nginx使用ssl模块配置HTTPS支持
- Android编程中ViewPage判断左右滑动方向的方法
- 探究Android中ListView复用导致布局错乱的解决方案
- java多线程编程同步器Future和FutureTask解析及代码示例
- Android实现搜索本地音乐的方法
- PHP的简单跳转提示的实现详解
- 使用shell来发tcp包的方法
- Lua流程控制语句if else的使用示例
- python正则表达式的使用(实验代码)