python实现堆和索引堆的代码示例

堆是一棵完全二叉树。堆分为大根堆和小根堆,大根堆是父节点大于左右子节点,并且左右子树也满足该性质的完全二叉树。小根堆相反。可以利用堆来实现优先队列。

由于是完全二叉树,所以可以使用数组来表示堆,索引从0开始[0:length-1]。结点i的左右子节点分别为2i+1,2i+2。长度为length的树的最后一个非叶子节点为length//2-1。当前节点i的父节点为(i-1)//2。其中//表示向下取整。

以大根堆举例。当每次插入或者删除的时候,为了保证堆的结构特征不被破坏,需要进行调整。调整分为两种,一种是从上往下,将小的数下沉。一种是从下往上,令大的数上浮。

具体实现如下:

首先编写几个魔术方法。包括构造函数,可以直接调用len来返回data数组长度的函数,一个打印data内容的函数

 def __init__(self, data=[]):
    self.data = data
    self.construct_heap()

 def __len__(self):
    return len(self.data)

 def __str__(self):
    return str(self.data)

定义一个swap函数,来方便的交换数组中两个索引处的值。

  def swap(self, i, j):
    self.data[i], self.data[j] = self.data[j], self.data[i]

定义float_up方法,使堆中大的数能浮上来。当前节点不为根节点,并且当前节点数据大小大于父节点时,上浮。

 def float_up(self, i):
    while i > 0 and self.data[i] > self.data[(i - 1) // 2]:
      self.swap(i, (i - 1) // 2)
      i = (i - 1) // 2

定义sink_down方法,使堆中小的数沉下去。当前节点不为叶子节点时,如果小于左孩子或右孩子的数据,则和左右孩子中较大的换一下位置。

def sink_down(self, i):
    while i < len(self) // 2:
      l, r = 2 * i + 1, 2 * i + 2
      if r < len(self) and self.data[l] < self.data[r]:
        l = r
      if self.data[i] < self.data[l]:
        self.swap(i, l)

      i = l

实现append方法,能够动态地添加数据。在数据数组尾部添加数据,然后将数据上浮。

  def append(self, data):
    self.data.append(data)
    self.float_up(len(self) - 1)

实现pop_left方法,取堆中最大元素,即优先队列中第一个元素。将数组中第一个元素与最后一个元素换位置,删除最后一个元素,然后将第一个元素下沉到合适的位置。

  def pop_left(self):
    self.swap(0, len(self) - 1)
    r = self.data.pop()
    self.sink_down(0)
    return r

如果想在初始化堆的时候,向构造函数中传入数据参数,则需要一次性将整个堆构建完毕,而不能一个一个加入。实现也很简单,从最后一个非叶节点开始,逐个执行sink_down操作。

  def construct_heap(self):
    for i in range(len(self) // 2 - 1, -1, -1):
      self.sink_down(i)

这样一个基本的堆的代码就编写完毕了。

但是如果我们想要动态的改变数据,当前的堆就不能满足我们的需求了,因为索引不能总是标识同一个数据,因为堆的结构是不断调整的。我们需要使用索引堆。

在索引堆中,我们不在堆中直接保存数据,而是用在堆中存放数据的索引。

如果我们输入的数据arr是 45 20 12 5 35。则arr[0]一直指向45,arr[1]一直指向20,因为我们在调整堆结构中实际调整的是索引数组,而不会改变真实存放数据的数组。

因此我们的代码需要调整,首先在构造函数中加入一个索引数组。下标从0开始,与存放数据的数组的下标相对应。

  def __init__(self, data=[]):
    self.data = data
    self.index_arr = list(range(len(self.data)))
    self.construct_heap()

然后将返回堆长度的魔术函数也修改一下。

  def __len__(self):
    return len(self.index_arr)

调整一下之前定义的swap方法,原来是直接交换数据,现在交换索引。

 def swap(self, i, j):
    self.index_arr[i], self.index_arr[j] = self.index_arr[j], self.index_arr[i]

调整float_up以及sink_down中的相应位置

  def float_up(self, i):
    while i > 0 and self.data[self.index_arr[i]] > self.data[self.index_arr[(i - 1) // 2]]:
      self.swap(i, (i - 1) // 2)
      i = (i - 1) // 2

  def sink_down(self, i):
    while i < len(self) // 2:
      l, r = 2 * i + 1, 2 * i + 2
      if r < len(self) and self.data[self.index_arr[l]] < self.data[self.index_arr[r]]:
        l = r
      if self.data[self.index_arr[i]] < self.data[self.index_arr[l]]:
        self.swap(i, l)

      i = l

当append数据的时候,要相应的更新index_arr

  def append(self, data):
    self.data.append(data)
    self.index_arr.append(len(self))
    self.float_up(len(self) - 1)

当移出数据的时候,之前已经提到过存放数据的数组,是按照append的顺序进行存储的,平时操作只是对index_arr的顺序进行调整。

如果data_arr为 42 30 74 60 相应的index_arr应该为2 3 0 1

这时,当我们popleft出最大元素时,data_arr中的74被移出后变成了42 30 60,数组中最大索引由3变成了2,如果索引数组中仍然用3这个索引来索引30会造成index溢出。74的索引为2,需要我们将索引数在2之后的都减1。

综上,在删除元素时,我们原先是将data_arr中的首尾元素互换,再删除尾部元素,再对头部元素进行sink_down操作。现在我们先换索引数组中首尾元素,再删除索引数组尾部元素,此时尚未操作存放data的data_arr,因此索引数组剩余元素与data_arr的元素仍是一一对应的。进行sink_down操作,操作完成之后再删除data_arr相应位置元素。最后将index_arr中值大于原index_arr头部元素值的减一。

  def pop_left(self):
    self.swap(0, len(self) - 1)
    r = self.index_arr.pop()
    self.sink_down(0)
    self.data.pop(r)

    for i, index in enumerate(self.index_arr):
      if index > r:
        self.index_arr[i] -= 1

    return r

索引堆增加了一个更新操作,可以随时更新索引堆中的数据。更新时,先直接更新data_arr中相应索引处的数据,然后在index_arr中,找到存放了data_arr中,刚被更新的数据的索引的索引位置,与删除时一样需要进行一次遍历。找到这个位置之后,由于无法确定与前后元素的大小关系,因此需要进行一次float_up操作再进行一次sink_down操作。

  def update(self, i, data):
    self.data[i] = data
    for index_index, index in enumerate(self.index_arr):
      if index == i:
        target = index_index

    self.float_up(target)
    self.sink_down(target)

可以很明显看出,这个索引堆在插入元素时是比较快的,但是在删除元素和更新元素时,为了查找相应位置索引,都进行了一次遍历,这是很耗时的操作。为了能更快的找到index_arr中值为要更新的data_arr的相应索引值得索引位置,我们再次开辟一个新的数组to_index,来对index_arr进行索引。

例如对于数组75 54 65 90

此时它的index_arr为3 0 2 1。当要更新data[3],即90这个元素时,现在要遍历一遍index_arr来找到3这个位置,这个位置是0。我们要建立一个to_index,to_index[3]中存放的元素为0。

index_arr存放的元素分别为: 1 3 2 0。

先改变swap数组,在交换index_arr中元素时,也交换存放在to_index中的index_arr的索引。

 def swap(self, i, j):
    self.index_arr[i], self.index_arr[j] = self.index_arr[j], self.index_arr[i]
    self.to_index[self.index_arr[i]], self.to_index[self.index_arr[j]] = self.to_index[self.index_arr[j]], \
                                       self.to_index[self.index_arr[i]]

然后在update中,当要更新位置为i的元素时,我们就不需要通过一次遍历才能找到index_arr中该元素的索引,而是直接通过访问index_arr[i]即可访问index_arr中相应索引

  def update(self, i, data):
    self.data[i] = data
    target = self.to_index[i]
    self.float_up(target)
    self.sink_down(target)

最后改变pop_left中相应代码,这时我们需要维护三个数组,data_arr,index_arr以及to_index。

仍然是首先将index_arr首位元素交换,并pop出尾部元素存放到i中。然后将头部元素sink_down到相应位置,然后将pop出data_arr索引i处的元素。然后pop出to_index中索引为i的元素,再将index_arr中索引溢出的元素进行调整。

  def pop_left(self):
    self.swap(0, len(self) - 1)
    r = self.index_arr.pop()

    self.sink_down(0)
    self.data.pop(r)

    self.to_index.pop(r)
    for i in range(r, len(self)):
      self.index_arr[self.to_index[i]] -= 1

    return r

以上就是python实现对和索引堆的具体方式。希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • python实现堆栈与队列的方法
  • Python记录详细调用堆栈日志的方法
  • python 实现堆排序算法代码
  • Python实现堆排序的方法详解
  • Python实现二叉堆
  • Python 数据结构之堆栈实例代码
  • Python基于list的append和pop方法实现堆栈与队列功能示例
  • python下实现二叉堆以及堆排序的示例
  • Python排序搜索基本算法之堆排序实例详解
  • Python实现基于二叉树存储结构的堆排序算法示例
(0)

相关推荐

  • python下实现二叉堆以及堆排序的示例

    堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序.堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势. 堆分为大头堆和小头堆, 正如其名, 大头堆的第一个元素是最大的, 每个有子结点的父结点, 其数据值都比其子结点的值要大.小头堆则相反. 我大概讲解下建一个树形堆的算法过程: 找到N/2 位置的数组数据, 从这个位置开始, 找到该节点的左子结点的索引, 先比较这个结点的下的子结点, 找到最大的那个, 将最大的子结点的索引赋值给左子结点, 然后将最大的子结点

  • python 实现堆排序算法代码

    复制代码 代码如下: #!/usr/bin/python import sys def left_child(node): return node * 2 + 1 def right_child(node): return node * 2 + 2 def parent(node): if (node % 2): return (i - 1) / 2 else: return (i - 2) / 2 def max_heapify(array, i, heap_size): l = left_c

  • Python实现堆排序的方法详解

    本文实例讲述了Python实现堆排序的方法.分享给大家供大家参考,具体如下: 堆排序作是基本排序方法的一种,类似于合并排序而不像插入排序,它的运行时间为O(nlogn),像插入排序而不像合并排序,它是一种原地排序算法,除了输入数组以外只占用常数个元素空间. 堆(定义):(二叉)堆数据结构是一个数组对象,可以视为一棵完全二叉树.如果根结点的值大于(小于)其它所有结点,并且它的左右子树也满足这样的性质,那么这个堆就是大(小)根堆. 我们假设某个堆由数组A表示,A[1]为树的根,给定某个结点的下标i,

  • Python排序搜索基本算法之堆排序实例详解

    本文实例讲述了Python排序搜索基本算法之堆排序.分享给大家供大家参考,具体如下: 堆是一种完全二叉树,堆排序是一种树形选择排序,利用了大顶堆堆顶元素最大的特点,不断取出最大元素,并调整使剩下的元素还是大顶堆,依次取出最大元素就是排好序的列表.举例如下,把序列[26,5,77,1,61,11,59,15,48,19]排序,如下: 基于堆的优先队列算法代码如下: def fixUp(a): #在堆尾加入新元素,fixUp恢复堆的条件 k=len(a)-1 while k>1 and a[k//2

  • Python记录详细调用堆栈日志的方法

    本文实例讲述了Python记录详细调用堆栈日志的方法.分享给大家供大家参考.具体实现方法如下: import sys import os def detailtrace(info): retStr = "" curindex=0 f = sys._getframe() f = f.f_back # first frame is detailtrace, ignore it while hasattr(f, "f_code"): co = f.f_code retSt

  • Python实现基于二叉树存储结构的堆排序算法示例

    本文实例讲述了Python实现基于二叉树存储结构的堆排序算法.分享给大家供大家参考,具体如下: 既然用Python实现了二叉树,当然要写点东西练练手. 网络上堆排序的教程很多,但是却几乎都是以数组存储的数,直接以下标访问元素,当然这样是完全没有问题的,实现简单,访问速度快,也容易理解. 但是以练手的角度来看,我还是写了一个二叉树存储结构的堆排序 其中最难的问题就是交换二叉树中两个节点. 因为一个节点最多与三个节点相连,那么两个节点互换,就需要考虑到5个节点之间的关系,也需要判断是左右孩子,这将是

  • Python实现二叉堆

    优先队列的二叉堆实现 在前面的章节里我们学习了"先进先出"(FIFO)的数据结构:队列(Queue).队列有一种变体叫做"优先队列"(Priority Queue).优先队列的出队(Dequeue)操作和队列一样,都是从队首出队.但在优先队列的内部,元素的次序却是由"优先级"来决定:高优先级的元素排在队首,而低优先级的元素则排在后面.这样,优先队列的入队(Enqueue)操作就比较复杂,需要将元素根据优先级尽量排到队列前面.我们将会发现,对于下一

  • Python 数据结构之堆栈实例代码

    Python 堆栈 堆栈是一个后进先出(LIFO)的数据结构. 堆栈这个数据结构可以用于处理大部分具有后进先出的特性的程序流 . 在堆栈中, push 和 pop 是常用术语: push: 意思是把一个对象入栈. pop: 意思是把一个对象出栈. 下面是一个由 Python 实现的简单的堆栈结构: stack = [] # 初始化一个列表数据类型对象, 作为一个栈 def pushit(): # 定义一个入栈方法 stack.append(raw_input('Enter New String:

  • Python基于list的append和pop方法实现堆栈与队列功能示例

    本文实例讲述了Python基于list的append和pop方法实现堆栈与队列功能.分享给大家供大家参考,具体如下: #coding=utf8 ''''' 堆栈: 堆栈是一个后进先出(LIFO)的数据结构. 在栈上"push"元素是个常用术语,意思是把一个对象添加到堆栈中. 删除一个元素,可以把它"pop"出堆栈. 队列: 队列是一种先进先出(FIFO)的数据类型. 新的元素通过"入队"的方式添加进队列的末尾, "出对"就是从

  • python实现堆栈与队列的方法

    本文实例讲述了python实现堆栈与队列的方法.分享给大家供大家参考.具体分析如下: 1.python实现堆栈,可先将Stack类写入文件stack.py,在其它程序文件中使用from stack import Stack,然后就可以使用堆栈了. stack.py的程序: 复制代码 代码如下: class Stack():      def __init__(self,size):          self.size=size;          self.stack=[];         

随机推荐