Python cookbook(数据结构与算法)将名称映射到序列元素中的方法

本文实例讲述了Python将名称映射到序列元素中的方法。分享给大家供大家参考,具体如下:

问题:希望通过名称来访问元素,减少结构中对位置的依赖性

解决方案:使用命名元组collections.namedtuple()。它是一个工厂方法,返回的是python中标准元组类型的子类,提供给它一个类型名称以及相应的字段名称,它就返回一个可实例化的类,为你以定义好的字段名称传入值等。

命名元组的主要作用在于将代码同它所控制的元素位置间进行解耦

>>> from collections import namedtuple
>>> Sub=namedtuple('Subscriber',['addr','joined'])
>>> subscriber=Sub('lucy@example.com','2016-8-7')
>>> subscriber
Subscriber(addr='lucy@example.com', joined='2016-8-7')
>>> subscriber.addr
'lucy@example.com'
>>> subscriber.joined
'2016-8-7'

namedtuple的实例与普通的元组是可互换的,而且支持所有普通元组所支持的操作,例如索引和分解(unpacking).

>>> len(subscriber)
2
>>> addr,joined=subscriber
>>> addr
'lucy@example.com'
>>> joined
'2016-8-7'
>>>

使用普通元组的代码:

def compute_cost(records):
  total = 0.0
  for rec in records:
    total += rec[1] * rec[2]
  return total

通过位置来引用元素使得代码的表达力不够,而且也依赖于记录的具体结构。

下面是使用命名元组的版本:

# example.py
from collections import namedtuple
Stock = namedtuple('Stock', ['name', 'shares', 'price'])
def compute_cost(records):
  total = 0.0
  for rec in records:
    s = Stock(*rec)
    total += s.shares * s.price
  return total
# Some Data
records = [
  ('GOOG', 100, 490.1),
  ('ACME', 100, 123.45),
  ('IBM', 50, 91.15)
]
print(compute_cost(records))

运行结果:

65912.5

补充:

如果要构建涉及字典的大型数据结构,使用namedtuple会更加有效。但是注意,与字典不同的是,namedtuple是不可变的。例如:

>>> s=Stock('ACMS',100,123.45)
>>> s
Stock(name='ACMS', shares=100, price=123.45)
>>> s.shares=75
Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
  s.shares=75
AttributeError: can't set attribute
>>>

若要修改属性,可使用namedtuple实例的_replace()方法来实现。该方法会创建一个全新的命名元组,并对相应的值做替换;

>>> s=s._replace(shares=75)
>>> s
Stock(name='ACMS', shares=75, price=123.45)
>>>

_replace()方法一个微妙的用途是它可以作为一种简便的方法填充具有可选或缺失字段的命名元组。

步骤:

1、创建一个包含默认值的“原型”元组;

2、使用_replace()方法创建一个新实例,把相应的值替换掉;

from collections import namedtuple
Stock = namedtuple('Stock', ['name', 'shares', 'price','date','time'])
#创建一个包含默认值的“原型”元组
stock_prototype=Stock('',0,0.0,None,None)
#创建一个函数实现将字典转化为Stock类型
def dict_to_stock(s):
  return stock_prototype._replace(**s)
a={'name':'ACMS','shares':100,'price':123.45}
print(dict_to_stock(a))
b={'name':'ACMS','shares':100,'price':123.45,'date':'2016-08-08'}
print(dict_to_stock(b))
c={'name':'ACMS','price':123.45}
print(dict_to_stock(c))

运行结果:

Stock(name='ACMS', shares=100, price=123.45, date=None, time=None)
Stock(name='ACMS', shares=100, price=123.45, date='2016-08-08', time=None)
Stock(name='ACMS', shares=0, price=123.45, date=None, time=None)

注意:如果我们的目标是定义一个高效的数据结构,而且将来会修改各种实例属性,那么不推荐namedtuple!

(代码摘自《Python Cookbook》)

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

您可能感兴趣的文章:

  • Python cookbook(数据结构与算法)将序列分解为单独变量的方法
  • Python cookbook(数据结构与算法)找出序列中出现次数最多的元素算法示例
  • Python cookbook(数据结构与算法)筛选及提取序列中元素的方法
  • Python cookbook(数据结构与算法)从序列中移除重复项且保持元素间顺序不变的方法
  • python实现获取序列中最小的几个元素
  • 利用Python找出序列中出现最多的元素示例代码
  • Python cookbook(数据结构与算法)实现对不原生支持比较操作的对象排序算法示例
  • Python cookbook(数据结构与算法)实现查找两个字典相同点的方法
  • Python cookbook(数据结构与算法)让字典保持有序的方法
  • Python cookbook(数据结构与算法)找到最大或最小的N个元素实现方法示例
  • Python数据结构与算法之常见的分配排序法示例【桶排序与基数排序】
(0)

相关推荐

  • Python cookbook(数据结构与算法)筛选及提取序列中元素的方法

    本文实例讲述了Python筛选及提取序列中元素的方法.分享给大家供大家参考,具体如下: 问题:提取出序列中的值或者根据某些标准对序列做删减 解决方案:列表推导式.生成器表达式.使用内建的filter()函数 1.列表推导式方法:存在一个潜在的缺点,如果输入数据非常大可能会产生一个庞大的结果,考虑到该问题,建议选择生成器表达式 # Examples of different ways to filter data mylist = [1, 4, -5, 10, -7, 2, 3, -1] prin

  • Python cookbook(数据结构与算法)让字典保持有序的方法

    本文实例讲述了Python让字典保持有序的方法.分享给大家供大家参考,具体如下: 问题:创建一个字典,同时对字典做迭代或序列化操作时,也能控制其中元素的顺序: 解决方案:可以使用collections模块中的OrderedDict类来控制字典中元素的顺序.当对字典做迭代时,他会严格按照元素初始添加的顺序进行.例如: from collections import OrderedDict d=OrderedDict() d['foo']=1 d['bar']=2 d['spam']=3 d['gr

  • Python数据结构与算法之常见的分配排序法示例【桶排序与基数排序】

    本文实例讲述了Python数据结构与算法之常见的分配排序法.分享给大家供大家参考,具体如下: 箱排序(桶排序) 箱排序是根据关键字的取值范围1~m,预先建立m个箱子,箱排序要求关键字类型为有限类型,可能会有无限个箱子,实用价值不大,一般用于基数排序的中间过程. 桶排序是箱排序的实用化变种,其对数据集的范围,如[0,1) 进行划分为n个大小相同的子区间,每一个子区间为一个桶,然后将n非记录分配到各桶中.因为关键字序列是均匀分布在[0,1)上的,所以一般不会有很多记录落入同一个桶中. 以下的桶排序方

  • Python cookbook(数据结构与算法)将序列分解为单独变量的方法

    本文实例讲述了Python cookbook(数据结构与算法)将序列分解为单独变量的方法.分享给大家供大家参考,具体如下: 如果对象是可迭代的(任何序列),则可以进行分解操作,包括元组.列表.字符串.文件.迭代器以及生成器,可通过简单的一个赋值操作分解为单独的变量. 唯一要求:变量的总数和序列相吻合,否则将出错: Python 2.7.11 (v2.7.11:6d1b6a68f775, Dec 5 2015, 20:32:19) [MSC v.1500 32 bit (Intel)] on wi

  • Python cookbook(数据结构与算法)找出序列中出现次数最多的元素算法示例

    本文实例讲述了Python找出序列中出现次数最多的元素.分享给大家供大家参考,具体如下: 问题:找出一个元素序列中出现次数最多的元素是什么 解决方案:collections模块中的Counter类正是为此类问题所设计的.它的一个非常方便的most_common()方法直接告诉你答案. # Determine the most common words in a list words = [ 'look', 'into', 'my', 'eyes', 'look', 'into', 'my', '

  • 利用Python找出序列中出现最多的元素示例代码

    前言 Python包含6种内置的序列:列表.元组.字符串 .Unicode字符串.buffer对象.xrange对象.在序列中的每个元素都有自己的编号.列表与元组的区别在于,列表是可以修改,而组元不可修改.理论上几乎所有情况下元组都可以用列表来代替.有个例外是但元组作为字典的键时,在这种情况下,因为键不可修改,所以就不能使用列表. 我们在一些统计工作或者分析过程中,有事会遇到要统计一个序列中出现最多次的元素,比如一段英文中,查询出现最多的词是什么,及每个词出现的次数.一遍的做法为,将每个此作为k

  • python实现获取序列中最小的几个元素

    本文实例讲述了python实现获取序列中最小的几个元素.分享给大家供大家参考. 具体方法如下: import heapq import random def issorted(data): data = list(data) heapq.heapify(data) while data: yield heapq.heappop(data) alist = [x for x in range(10)] random.shuffle(alist) print 'the origin list is'

  • Python cookbook(数据结构与算法)找到最大或最小的N个元素实现方法示例

    本文实例讲述了python找到最大或最小的N个元素实现方法.分享给大家供大家参考,具体如下: 问题:想在某个集合中找出最大或最小的N个元素 解决方案:heapq模块中的nlargest()和nsmallest()两个函数正是我们需要的. >>> import heapq >>> nums=[1,8,2,23,7,-4,18,23,42,37,2] >>> print(heapq.nlargest(3,nums)) [42, 37, 23] >&g

  • Python cookbook(数据结构与算法)从序列中移除重复项且保持元素间顺序不变的方法

    本文实例讲述了Python从序列中移除重复项且保持元素间顺序不变的方法.分享给大家供大家参考,具体如下: 问题:从序列中移除重复的元素,但仍然保持剩下的元素顺序不变 解决方案: 1.如果序列中的值时可哈希(hashable)的,可以通过使用集合和生成器解决. # example.py # # Remove duplicate entries from a sequence while keeping order def dedupe(items): seen = set() for item i

  • Python cookbook(数据结构与算法)实现查找两个字典相同点的方法

    本文实例讲述了Python实现查找两个字典相同点的方法.分享给大家供大家参考,具体如下: 问题:寻找两个字典中间相同的地方(相同的键.相同的值等) 解决方案:通过keys()或者items()方法来执行常见的集合操作(比如求并集.交集和差集) >>> a={'x':1,'y':2,'z':3} >>> b={'ww':10,'x':11,'y':2} >>> a.keys()& b.keys() #键的交集 {'y', 'x'} >>

  • Python cookbook(数据结构与算法)实现对不原生支持比较操作的对象排序算法示例

    本文实例讲述了Python实现对不原生支持比较操作的对象排序算法.分享给大家供大家参考,具体如下: 问题:想在同一个类的实例之间做排序,但是它们并不原生支持比较操作. 解决方案:使用内建的sorted()函数可接受一个用来传递可调用对象的参数key,sorted利用该可调用对象返回的待排序对象中的某些值来比较对象. from operator import attrgetter class User: def __init__(self, user_id): self.user_id = use

随机推荐