python广度优先搜索得到两点间最短路径

前言

之前一直写不出来,这周周日花了一下午终于弄懂了, 顺便放博客里,方便以后忘记了再看看。
要实现的是输入一张 图,起点,终点,输出起点和终点之间的最短路径。

广度优先搜索

适用范围: 无权重的图,与深度优先搜索相比,深度优先搜索法占内存少但速度较慢,广度优先搜索算法占内存多但速度较快

复杂度: 时间复杂度为O(V+E),V为顶点数,E为边数

思路

广度优先搜索是以层为顺序,将某一层上的所有节点都搜索到了之后才向下一层搜索;
比如下图:

从0结点开始搜索的话,一开始是0、将0加入队列中;
然后下一层,0可以到达的有1,2,4,将他们加入队列中;
接下来是1,1能到达的且未被访问的是结点3
顺序就是 0, 1,2,4, 3,这里用下划线表示每一层搜索得到的结点;

每一次用cur = que[head]取出头指针指向的结点,并搜索它能到达的结点;因此,可以用一个队列que来保存已经访问过的结点,队列有头指针head以及尾指针tail,起点start与结点i有边并且结点i未被访问过,则将该结点加入队列中,tail指针往后移动;当tail等于顶点数时算法结束

对于每一次while循环,head都加一,也就是往右边移动,比如一开始head位置是0,下一层的时候head位置元素就为1,也就是搜索与结点1有边的且未被访问的结点

用一个数组book来标识结点i是否已经被访问过;用字典来保存起点到各个点的最短路径;
代码如下:

import numpy as np

ini_matrix = [
     [0, 1, 1, 0, 1],
     [1, 0, 0, 1, 0],
     [1, 0, 0, 0, 1],
     [0, 1, 0, 0, 0],
     [1, 0, 1, 0, 0]
     ]

def bfs(matrix_para, start_point_para, end_point_para):
  """
  广度优先搜索
  :param matrix_para 图
  :param start_point_para 起点
  :param end_point_para 终点
  :return: 返回关联度
  """
  matrix = matrix_para
  start_point = start_point_para
  end_point = end_point_para

  vertex_num = len(matrix) # 顶点个数

  que = np.zeros(vertex_num, dtype=np.int) # 队列, 用于存储遍历过的顶点
  book = np.zeros(vertex_num, dtype=np.int) # 标记顶点i是否已经被访问,1表被访问,0表未被访问

  point_step_dict = dict() # key:点,value:起点到该点的步长

  # 队列初始化
  head = 0
  tail = 0

  # 从起点出发,将起点加入队列
  que[tail] = start_point # 等号右边为顶点号(起点)
  tail += 1
  book[start_point] = 1 # book[i] i为顶点号

  while head<tail:
    cur = que[head]
    for i in range(vertex_num):
      # 判断从顶点cur到顶点i是否有边,并判断顶点i是否已经被访问过
      if matrix[cur][i] == 1 and book[i] == 0:
        que[tail] = i # 将顶点i放入队列中
        tail += 1 # tail指针往后移
        book[i] = 1 # 标记顶点i为已经访问过
        point_step_dict[i] = head + 1 # 记录步长
      if tail == vertex_num: # 说明所有顶点都被访问过
        break
    head += 1

  for i in range(tail):
    print(que[i])

  try:
    relevancy = point_step_dict[end_point]
    return relevancy
  except KeyError: # 捕获错误,如果起点不能到达end_point,则字典里没有这个键,返回None
    return None

result = bfs(ini_matrix, 1, 4)
print("result:", result)

错误

在经同学的一番调教之后,我深刻意识到了这段代码有个问题(不能用head记录步长),就是对于有环的时候,可能得到的步长(迭代次数)会比最短路径还大;
比如,起点为4,终点为3:这里每一遍迭代都是一次while循环
第一遍迭代,队列4,head指向4,步长为0
第二遍迭代,队列4,0 , 2,head指向0, 步长为1
第三遍迭代,队列4,0 , 2,1,head指向2,步长为2,
第四遍迭代,对于2,2周围都被访问过了,但此时head仍然+=1为3,这就导致了下一次的步长会比实际的步长多1
第五遍迭代, 3,步长为4

纠正

改进的思路:用count记录步长,flag用于标识当前搜索能到达的边的该结点cur = que[head]周围是否已经被访问过,False表示没有,True表示该结点i周围都被访问过了;也就是,当flag为False时,表示对于cur周围已经都访问过了,此时步长count不需要自增1;

import numpy as np

ini_matrix = [
     [0, 1, 1, 0, 1],
     [1, 0, 0, 1, 0],
     [1, 0, 0, 0, 1],
     [0, 1, 0, 0, 0],
     [1, 0, 1, 0, 0]
     ]

def bfs(matrix_para, start_point_para, end_point_para):
  """
  广度优先搜索
  :param matrix_para 图
  :param start_point_para 起点
  :param end_point_para 终点
  :return: 返回关联度
  """
  matrix = matrix_para
  start_point = start_point_para
  end_point = end_point_para

  vertex_num = len(matrix) # 顶点个数

  que = np.zeros(vertex_num, dtype=np.int) # 队列, 用于存储遍历过的顶点
  book = np.zeros(vertex_num, dtype=np.int) # 标记顶点i是否已经被访问,1表被访问,0表未被访问

  point_step_dict = dict() # key:点,value:起点到该点的步长

  # 队列初始化
  head = 0
  tail = 0

  # 迭代次数
  count = 0

  # 从0号顶点出发,将0号顶点加入队列
  que[tail] = start_point # 等号右边为顶点号(起点)
  tail += 1
  book[start_point] = 1 # book[i] i为顶点号

  while head<tail:
    flag = False # 用flag标识结点i是否周围都是被访问过的
    cur = que[head]
    for i in range(vertex_num):
      # 判断从顶点cur到顶点i是否有边,并判断顶点i是否已经被访问过
      if matrix[cur][i] == 1 and book[i] == 0:
        que[tail] = i # 将顶点i放入队列中
        tail += 1 # tail指针往后移
        book[i] = 1 # 标记顶点i为已经访问过
        point_step_dict[i] = count + 1 # 记录步长
        flag = True
      if tail == vertex_num: # 说明所有顶点都被访问过
        break
    if flag:
      count += 1
    head += 1

  for i in range(tail):
    print(que[i])

  try:
    relevancy = point_step_dict[end_point]
    return relevancy
  except KeyError:
    return None

result = bfs(ini_matrix, 3, 4)
print("result:", result)

写在后面

真的很抱歉, 第一次写这种算法博客结果出了这么大的问题,之前都是一些记录BUG的文章,还好同学及时和我说了,主要原因还是自己没有做那么多测试的问题。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python深度优先算法生成迷宫

    本文实例为大家分享了Python深度优先算法生成迷宫,供大家参考,具体内容如下 import random #warning: x and y confusing sx = 10 sy = 10 dfs = [[0 for col in range(sx)] for row in range(sy)] maze = [[' ' for col in range(2*sx+1)] for row in range(2*sy+1)] #1:up 2:down 3:left 4:right opera

  • python深度优先搜索和广度优先搜索

    1. 深度优先搜索介绍 图的深度优先搜索(Depth First Search),和树的先序遍历比较类似. 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到. 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止. 显然,深度优先搜索是一个递归的过程. 2. 广度优先搜索介绍 广度优先搜索算法(Breadt

  • python实现树的深度优先遍历与广度优先遍历详解

    本文实例讲述了python实现树的深度优先遍历与广度优先遍历.分享给大家供大家参考,具体如下: 广度优先(层次遍历) 从树的root开始,从上到下从左到右遍历整个树的节点 数和二叉树的区别就是,二叉树只有左右两个节点 广度优先 顺序:A - B - C - D - E - F - G - H - I 代码实现 def breadth_travel(self, root): """利用队列实现树的层次遍历""" if root == None: r

  • Python数据结构与算法之图的广度优先与深度优先搜索算法示例

    本文实例讲述了Python数据结构与算法之图的广度优先与深度优先搜索算法.分享给大家供大家参考,具体如下: 根据维基百科的伪代码实现: 广度优先BFS: 使用队列,集合 标记初始结点已被发现,放入队列 每次循环从队列弹出一个结点 将该节点的所有相连结点放入队列,并标记已被发现 通过队列,将迷宫路口所有的门打开,从一个门进去继续打开里面的门,然后返回前一个门处 """ procedure BFS(G,v) is let Q be a queue Q.enqueue(v) lab

  • python 递归深度优先搜索与广度优先搜索算法模拟实现

     一.递归原理小案例分析 (1)# 概述 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! (2)# 写递归的过程 1.写出临界条件 2.找出这一次和上一次关系 3.假设当前函数已经能用,调用自身计算上一次的结果,再求出本次的结果 (3)案例分析:求1+2+3+...+n的数和 # 概述 ''' 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! ''' # 写递归的过程 ''' 1.写出临界条件 2.找出这一次和上一次关系 3.假设

  • 10分钟教你用python动画演示深度优先算法搜寻逃出迷宫的路径

    深度优先算法(DFS 算法)是什么? 寻找起始节点与目标节点之间路径的算法,常用于搜索逃出迷宫的路径.主要思想是,从入口开始,依次搜寻周围可能的节点坐标,但不会重复经过同一个节点,且不能通过障碍节点.如果走到某个节点发现无路可走,那么就会回退到上一个节点,重新选择其他路径.直到找到出口,或者退到起点再也无路可走,游戏结束.当然,深度优先算法,只要查找到一条行得通的路径,就会停止搜索:也就是说只要有路可走,深度优先算法就不会回退到上一步. 如果你依然在编程的世界里迷茫,可以加入我们的Python学

  • python数据结构之图深度优先和广度优先实例详解

    本文实例讲述了python数据结构之图深度优先和广度优先用法.分享给大家供大家参考.具体如下: 首先有一个概念:回溯 回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标.但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为"回溯点". 深度优先算法: (1)访问初始顶点v并标记顶点v已访问. (2)查找顶点v的第一个邻接顶点w. (3)若顶点v的邻接顶点w存在,则继续执行:否则回

  • python实现广度优先搜索过程解析

    广度优先搜索 适用范围: 无权重的图,与深度优先搜索相比,深度优先搜索法占内存少但速度较慢,广度优先搜索算法占内存多但速度较快 复杂度: 时间复杂度为O(V+E),V为顶点数,E为边数 思路 广度优先搜索是以层为顺序,将某一层上的所有节点都搜索到了之后才向下一层搜索: 代码 from collections import deque #解决从你的人际关系网中找到芒果销售商的问题 #使用字典表示映射关系 graph = {} graph["you"] = ["alice&quo

  • python图的深度优先和广度优先算法实例分析

    本文实例讲述了python图的深度优先和广度优先算法.分享给大家供大家参考,具体如下: 首先有一个概念:回溯 回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标.但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为"回溯点". 深度优先算法: (1)访问初始顶点v并标记顶点v已访问. (2)查找顶点v的第一个邻接顶点w. (3)若顶点v的邻接顶点w存在,则继续执行:否则回溯到v,

  • python广度优先搜索得到两点间最短路径

    前言 之前一直写不出来,这周周日花了一下午终于弄懂了, 顺便放博客里,方便以后忘记了再看看. 要实现的是输入一张 图,起点,终点,输出起点和终点之间的最短路径. 广度优先搜索 适用范围: 无权重的图,与深度优先搜索相比,深度优先搜索法占内存少但速度较慢,广度优先搜索算法占内存多但速度较快 复杂度: 时间复杂度为O(V+E),V为顶点数,E为边数 思路 广度优先搜索是以层为顺序,将某一层上的所有节点都搜索到了之后才向下一层搜索: 比如下图: 从0结点开始搜索的话,一开始是0.将0加入队列中: 然后

  • JS实现深度优先搜索求解两点间最短路径

    本文实例为大家分享了JS实现深度优先搜索求解两点间最短路径的具体代码,供大家参考,具体内容如下 效果: 找出图里点到点最短路径,并打印轨迹 图片如下所示: 代码: const map = [ [0, 1, 1, 0, 1], [1, 0, 0, 1, 0], [1, 0, 0, 0, 1], [0, 1, 0, 0, 0], [1, 0, 1, 0, 0] ] function dfsManager(map, start, end){ var min = 9999, path = [], unv

  • C语言寻找无向图两点间的最短路径

    1.简介 无向图是图结构的一种.本次程序利用邻接表实现无向图,并且通过广度优先遍历找到两点之间的最短路径. 2.广度优先遍历 广度优先遍历(BFS)和深度优先遍历(DFS)是图结构中最常用的遍历方式.其中广度优先遍历配合上队列能够找到两点之间的最短路径,同时也能解决一些其他的问题(比如寻找迷宫的最短逃离路线).广度优先遍历寻找两点之间最短路径的操作分为以下几步: 1).首先定义起始点和终点src和dst.接着定义一个数组distance[ ],用于存放各点到src的距离.初始化时各点到src的距

  • 使用PostGIS完成两点间的河流轨迹及流经长度的计算(推荐)

    目录 基础准备工作 1.PostGIS 的安装 2.加载Post GIS扩展 3.河流矢量图层转成单线格式 4.河流矢量数据导入PostgreSQL数据库 5.河流数据拓扑处理 PG分析处理函数 1.函数编写 2.参数说明 3.内部调用函数说明 4.输出结果验证 基础准备工作 1.PostGIS 的安装 在安装PostGIS前首先必须安装PostgreSQL,然后再安装好的Stack Builder中选择安装PostGIS组件.具体安装步骤可参照PostGIS的安装与初步使用 2.加载Post

  • C++实现广度优先搜索实例

    本文主要叙述了图的遍历算法中的广度优先搜索(Breadth-First-Search)算法,是非常经典的算法,可供C++程序员参考借鉴之用.具体如下: 首先,图的遍历是指从图中的某一个顶点出发,按照某种搜索方法沿着图中的边对图中的所有顶点访问一次且仅访问一次.注意到树是一种特殊的图,所以树的遍历实际上也可以看作是一种特殊的图的遍历.图的遍历主要有两种算法:广度优先搜索(Breadth-First-Search)和深度优先搜索(Depth-First-Search). 一.广度优先搜索(BFS)的

  • Java编程实现基于图的深度优先搜索和广度优先搜索完整代码

    为了解15puzzle问题,了解了一下深度优先搜索和广度优先搜索.先来讨论一下深度优先搜索(DFS),深度优先的目的就是优先搜索距离起始顶点最远的那些路径,而广度优先搜索则是先搜索距离起始顶点最近的那些路径.我想着深度优先搜索和回溯有什么区别呢?百度一下,说回溯是深搜的一种,区别在于回溯不保留搜索树.那么广度优先搜索(BFS)呢?它有哪些应用呢?答:最短路径,分酒问题,八数码问题等.言归正传,这里笔者用java简单实现了一下广搜和深搜.其中深搜是用图+栈实现的,广搜使用图+队列实现的,代码如下:

  • 利用Python实现Excel的文件间的数据匹配功能

    我们知道Excel有一个match函数,可以做数据匹配. 比如要根据人名获取成绩 而参考表sheet1的内容如下: 要根据sheet1匹配每人的成绩,用Excel是这么写 index(Sheet1!B:B,MATCH(A2,Sheet1!A:A,0)) 意思就是获取sheet1的B列的内容,根据我的A列匹配sheet1的A列的内容 但是如何用python实现这一点呢,我写了一个函数,非常好用,分享给大家. 这个函数考虑到了匹配多个字段,多个sheet. import pandas as pd d

  • 详解Go语言运用广度优先搜索走迷宫

    目录 一.理解广度优先算法 1.1.分析如何进行广度优先探索 1.2.我们来总结一下 1.3.代码分析 二.代码实现广度优先算法走迷宫 一.理解广度优先算法 我们要实现的是广度优先算法走迷宫 比如,我们有一个下面这样的迷宫 这个迷宫是6行5列 其中0代表可以走的路, 1代表一堵墙. 我们把墙标上言责, 就如右图所示. 其中(0,0)是起点, (6, 5)是终点. 我们要做的是, 从起点走到终点最近的路径. 这个例子是抛转隐喻, 介绍广度优先算法, 广度优先算法的应用很广泛, 所以, 先来看看规律

随机推荐