python+OpenCV实现车牌号码识别

基于python+OpenCV的车牌号码识别,供大家参考,具体内容如下

车牌识别行业已具备一定的市场规模,在电子警察、公路卡口、停车场、商业管理、汽修服务等领域已取得了部分应用。一个典型的车辆牌照识别系统一般包括以下4个部分:车辆图像获取、车牌定位、车牌字符分割和车牌字符识别

1、车牌定位的主要工作是从获取的车辆图像中找到汽车牌照所在位置,并把车牌从该区域中准确地分割出来
这里所采用的是利用车牌的颜色(黄色、蓝色、绿色) 来进行定位

#定位车牌
def color_position(img,output_path):
 colors = [([26,43,46], [34,255,255]), # 黄色
    ([100,43,46], [124,255,255]), # 蓝色
    ([35, 43, 46], [77, 255, 255]) # 绿色
    ]
 hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
 for (lower, upper) in colors:
  lower = np.array(lower, dtype="uint8") # 颜色下限
  upper = np.array(upper, dtype="uint8") # 颜色上限

  # 根据阈值找到对应的颜色
  mask = cv2.inRange(hsv, lowerb=lower, upperb=upper)
  output = cv2.bitwise_and(img, img, mask=mask)
  k = mark_zone_color(output,output_path)
  if k==1:
   return 1
  # 展示图片
  #cv2.imshow("image", img)
  #cv2.imshow("image-color", output)
  #cv2.waitKey(0)
 return 0

2、将车牌提取出来

def mark_zone_color(src_img,output_img):
 #根据颜色在原始图像上标记
 #转灰度
 gray = cv2.cvtColor(src_img,cv2.COLOR_BGR2GRAY)

 #图像二值化
 ret,binary = cv2.threshold(gray,0,255,cv2.THRESH_BINARY)
 #轮廓检测
 x,contours,hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
 #drawing = img
 #cv2.drawContours(drawing, contours, -1, (0, 0, 255), 3) # 填充轮廓颜色
 #cv2.imshow('drawing', drawing)
 #cv2.waitKey(0)
 #print(contours)

 temp_contours = [] # 存储合理的轮廓
 car_plates=[]
 if len(contours)>0:
  for contour in contours:
   if cv2.contourArea(contour) > Min_Area:
    temp_contours.append(contour)
   car_plates = []
   for temp_contour in temp_contours:
    rect_tupple = cv2.minAreaRect(temp_contour)
    rect_width, rect_height = rect_tupple[1]
    if rect_width < rect_height:
     rect_width, rect_height = rect_height, rect_width
    aspect_ratio = rect_width / rect_height
    # 车牌正常情况下宽高比在2 - 5.5之间
    if aspect_ratio > 2 and aspect_ratio < 5.5:
     car_plates.append(temp_contour)
     rect_vertices = cv2.boxPoints(rect_tupple)
     rect_vertices = np.int0(rect_vertices)
   if len(car_plates)==1:
    oldimg = cv2.drawContours(img, [rect_vertices], -1, (0, 0, 255), 2)
    #cv2.imshow("che pai ding wei", oldimg)
    # print(rect_tupple)
    break

 #把车牌号截取出来
 if len(car_plates)==1:
  for car_plate in car_plates:
   row_min,col_min = np.min(car_plate[:,0,:],axis=0)
   row_max,col_max = np.max(car_plate[:,0,:],axis=0)
   cv2.rectangle(img,(row_min,col_min),(row_max,col_max),(0,255,0),2)
   card_img = img[col_min:col_max,row_min:row_max,:]
   cv2.imshow("img",img)
  cv2.imwrite(output_img + '/' + 'card_img' + '.jpg',card_img)
  cv2.imshow("card_img.",card_img)
  cv2.waitKey(0)
  cv2.destroyAllWindows()
  return 1
 return 0

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • OpenCV+python手势识别框架和实例讲解

    基于OpenCV2.4.8和 python 2.7实现简单的手势识别. 以下为基本步骤 1.去除背景,提取手的轮廓 2. RGB->YUV,同时计算直方图 3.进行形态学滤波,提取感兴趣的区域 4.找到二值化的图像轮廓 5.找到最大的手型轮廓 6.找到手型轮廓的凸包 7.标记手指和手掌 8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状 提取手的轮廓 cv2.findContours() 找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点

  • 详解如何用OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

  • Python+Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • python+opencv识别图片中的圆形

    本文实例为大家分享了python+opencv识别图片中足球的方法,供大家参考,具体内容如下 先补充下霍夫圆变换的几个参数知识: dp,用来检测圆心的累加器图像的分辨率于输入图像之比的倒数,且此参数允许创建一个比输入图像分辨率低的累加器.上述文字不好理解的话,来看例子吧.例如,如果dp= 1时,累加器和输入图像具有相同的分辨率.如果dp=2,累加器便有输入图像一半那么大的宽度和高度. minDist,为霍夫变换检测到的圆的圆心之间的最小距离,即让我们的算法能明显区分的两个不同圆之间的最小距离.这

  • Python Opencv实现图像轮廓识别功能

    本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th

  • python+opencv实现动态物体识别

    注意:这种方法十分受光线变化影响 自己在家拿着手机瞎晃的成果图: 源代码: # -*- coding: utf-8 -*- """ Created on Wed Sep 27 15:47:54 2017 @author: tina """ import cv2 import numpy as np camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头 # 判断视频是否打开 if (camera.isOpened()

  • python+opencv实现的简单人脸识别代码示例

    # 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

  • python使用opencv进行人脸识别

    环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

  • Python+OpenCV实现车牌字符分割和识别

    最近做一个车牌识别项目,入门级别的,十分简单. 车牌识别总体分成两个大的步骤: 一.车牌定位:从照片中圈出车牌 二.车牌字符识别 这里只说第二个步骤,字符识别包括两个步骤: 1.图像处理 原本的图像每个像素点都是RGB定义的,或者称为有R/G/B三个通道.在这种情况下,很难区分谁是背景,谁是字符,所以需要对图像进行一些处理,把每个RGB定义的像素点都转化成一个bit位(即0-1代码),具体方法如下: ①将图片灰度化 名字拗口,但是意思很好理解,就是把每个像素的RGB都变成灰色的RGB值,而灰色的

  • python+OpenCV实现车牌号码识别

    基于python+OpenCV的车牌号码识别,供大家参考,具体内容如下 车牌识别行业已具备一定的市场规模,在电子警察.公路卡口.停车场.商业管理.汽修服务等领域已取得了部分应用.一个典型的车辆牌照识别系统一般包括以下4个部分:车辆图像获取.车牌定位.车牌字符分割和车牌字符识别 1.车牌定位的主要工作是从获取的车辆图像中找到汽车牌照所在位置,并把车牌从该区域中准确地分割出来 这里所采用的是利用车牌的颜色(黄色.蓝色.绿色) 来进行定位 #定位车牌 def color_position(img,ou

  • python+opencv实现车牌定位功能(实例代码)

    写在前面 HIT大三上学期视听觉信号处理课程中视觉部分的实验三,经过和学长们实验的对比发现每一级实验要求都不一样,因此这里标明了是2019年秋季学期的视觉实验三. 由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 对给定的车牌进行车牌识别 实验代码 代码首先贴在这里,仅供参考 源代码 实验代码如下: import cv2 import numpy as np def lpr(filename): img = cv2.imread(filename) # 预处理,包括灰度处理,高斯

  • Opencv创建车牌图片识别系统方法详解

    目录 前言 包含功能 软件版本 软件架构 参考文档 效果图展示 车牌检测过程 图片车牌文字识别过程 部分核心代码 前言 这是一个基于spring boot + maven + opencv 实现的图像识别及训练的Demo项目 包含车牌识别.人脸识别等功能,贯穿样本处理.模型训练.图像处理.对象检测.对象识别等技术点 java语言的深度学习项目,在整个开源社区来说都相对较少: 拥有完整的训练过程.检测.识别过程的开源项目更是少之又少!! 包含功能 蓝.绿.黄车牌检测及车牌号码识别 网上常见的轮廓提

  • python OpenCV实现答题卡识别判卷

    本文实例为大家分享了python OpenCV实现答题卡识别判卷的具体代码,供大家参考,具体内容如下 完整代码: #导入工具包 import numpy as np import argparse import imutils import cv2 # 设置参数 ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", default="./images/test_03.png"

  • python+opencv实现文字颜色识别与标定功能

    最近接了一个比较简单的图像处理的单子,花了一点时间随便写了一下: 数据集客户没有是自己随便创建的: 程序如下: """ Code creation time:September 11, 2021 Author:PanBo Realize function:It mainly realizes the recognition and calibration of fonts with different colors """ import nump

  • Python+OpenCV进行人脸面部表情识别

    目录 前言 一.图片预处理 二.数据集划分 三.识别笑脸 四.Dlib提取人脸特征识别笑脸和非笑脸 前言 环境搭建可查看Python人脸识别微笑检测 数据集可在https://inc.ucsd.edu/mplab/wordpress/index.html%3Fp=398.html获取 数据如下: 一.图片预处理 import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库numpy import cv2 # 图像处理的库OpenCv import os

  • Python Opencv使用ann神经网络识别手写数字功能

    opencv中也提供了一种类似于Keras的神经网络,即为ann,这种神经网络的使用方法与Keras的很接近.关于mnist数据的解析,读者可以自己从网上下载相应压缩文件,用python自己编写解析代码,由于这里主要研究knn算法,为了图简单,直接使用Keras的mnist手写数字解析模块.本次代码运行环境为:python 3.6.8opencv-python 4.4.0.46opencv-contrib-python 4.4.0.46 下面的代码为使用ann进行模型的训练: from kera

  • Python+OpenCV实现信用卡数字识别的方法详解

    目录 一.模板图像处理 二.信用卡图片预处理 一.模板图像处理 (1)灰度图.二值图转化 template = cv2.imread('C:/Users/bwy/Desktop/number.png') template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY) cv_show('template_gray', template_gray) # 形成二值图像,因为要做轮廓检测 ret, template_thresh = cv2.thre

  • Python+OpenCV手势检测与识别Mediapipe基础篇

    目录 前言 项目效果图 认识Mediapipe 项目环境 代码 核心代码 视频帧率计算 完整代码 项目输出 结语 前言 本篇文章适合刚入门OpenCV的同学们.文章将介绍如何使用Python利用OpenCV图像捕捉,配合强大的Mediapipe库来实现手势检测与识别:本系列后续还会继续更新Mediapipe手势的各种衍生项目,还请多多关注! 项目效果图 视频捕捉帧数稳定在(25-30) 认识Mediapipe 项目的实现,核心是强大的Mediapipe ,它是google的一个开源项目: 功能

随机推荐