python编码最佳实践之总结

相信用python的同学不少,本人也一直对python情有独钟,毫无疑问python作为一门解释性动态语言没有那些编译型语言高效,但是python简洁、易读以及可扩展性等特性使得它大受青睐。

工作中很多同事都在用python,但往往很少有人关注它的性能和惯用法,一般都是现学现用,毕竟python不是我们的主要语言,我们一般只是使用它来做一些系统管理的工作。但是我们为什么不做的更好呢?python zen中有这样一句:There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. 大意就是python鼓励使用一种最优的方法去完成一件事,这也是和ruby等的一个差异。所以一种好的python编写习惯个人认为很重要,本文就重点从性能角度出发对python的一些惯用法做一个简单总结,希望对大家有用~

提到性能,最容易想到的是降低复杂度,一般可以通过测量代码回路复杂度(cyclomatic complexitly)和Landau符号(大O)来分析, 比如dict查找是O(1),而列表的查找却是O(n),显然数据的存储方式选择会直接影响算法的复杂度。

一、数据结构的选择
1. 在列表中查找:

对于已经排序的列表考虑用bisect模块来实现查找元素,该模块将使用二分查找实现

def find(seq, el) :
  pos = bisect(seq, el)
  if pos == 0 or ( pos == len(seq) and seq[-1] != el ) :
    return -1
  return pos - 1

而快速插入一个元素可以用:

 bisect.insort(list, element)

这样就插入元素并且不需要再次调用 sort() 来保序,要知道对于长list代价很高.

2. set代替列表:

比如要对一个list进行去重,最容易想到的实现:

seq = ['a', 'a', 'b']
res = []
for i in seq:
  if i not in res:
    res.append(i)

显然上面的实现的复杂度是O(n2),若改成:

seq = ['a', 'a', 'b']
res = set(seq)

复杂度马上降为O(n),当然这里假定set可以满足后续使用。

另外,set的union,intersection,difference等操作要比列表的迭代快的多,因此如果涉及到求列表交集,并集或者差集等问题可以转换为set来进行,平时使用的时候多注意下,特别当列表比较大的时候,性能的影响就更大。

3. 使用python的collections模块替代内建容器类型:

collections有三种类型:

deque:增强功能的类似list类型
defaultdict:类似dict类型
namedtuple:类似tuple类型

列表是基于数组实现的,而deque是基于双链表的,所以后者在中间or前面插入元素,或者删除元素都会快很多。

defaultdict为新的键值添加了一个默认的工厂,可以避免编写一个额外的测试来初始化映射条目,比dict.setdefault更高效,引用python文档的一个例子:

#使用profile stats工具进行性能分析

>>> from pbp.scripts.profiler import profile, stats
>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3),
... ('blue', 4), ('red', 1)]
>>> @profile('defaultdict')
... def faster():
... d = defaultdict(list)
... for k, v in s:
... d[k].append(v)
...
>>> @profile('dict')
... def slower():
... d = {}
... for k, v in s:
... d.setdefault(k, []).append(v)
...
>>> slower(); faster()
Optimization: Solutions
[ 306 ]
>>> stats['dict']
{'stones': 16.587882671716077, 'memory': 396,
'time': 0.35166311264038086}
>>> stats['defaultdict']
{'stones': 6.5733464259021686, 'memory': 552,
'time': 0.13935494422912598}

可见性能提升了快3倍。defaultdict用一个list工厂作为参数,同样可用于内建类型,比如long等。

除了实现的算法、架构之外,python提倡简单、优雅。所以正确的语法实践又很有必要,这样才会写出优雅易于阅读的代码。

二、语法最佳实践
字符串操作:优于python字符串对象是不可改变的,因此对任何字符串的操作如拼接,修改等都将产生一个新的字符串对象,而不是基于原字符串,因此这种持续的 copy会在一定程度上影响Python的性能:
        (1)用join代替 '+' 操作符,后者有copy开销;

(2)同时当对字符串可以使用正则表达式或者内置函数来处理的时候,选择内置函数。如str.isalpha(),str.isdigit(),str.startswith((‘x', ‘yz')),str.endswith((‘x', ‘yz'))

(3)字符格式化操作优于直接串联读取:

str = "%s%s%s%s" % (a, b, c, d)  # efficient
     str = "" + a + b + c + d + ""  # slow

2. 善用list comprehension(列表解析)  & generator(生成器) & decorators(装饰器),熟悉itertools等模块:

(1) 列表解析,我觉得是python2中最让我印象深刻的特性,举例1:

   >>> # the following is not so Pythonic
   >>> numbers = range(10)
   >>> i = 0
   >>> evens = []
   >>> while i < len(numbers):
   >>>  if i %2 == 0: evens.append(i)
   >>>  i += 1
   >>> [0, 2, 4, 6, 8] 

   >>> # the good way to iterate a range, elegant and efficient
   >>> evens = [ i for i in range(10) if i%2 == 0]
   >>> [0, 2, 4, 6, 8]

举例2:

def _treament(pos, element):
  return '%d: %s' % (pos, element)
f = open('test.txt', 'r')
if __name__ == '__main__':
  #list comps 1
  print sum(len(word) for line in f for word in line.split())
  #list comps 2
  print [(x + 1, y + 1) for x in range(3) for y in range(4)]
  #func
  print filter(lambda x: x % 2 == 0, range(10))
  #list comps3
  print [i for i in range(10) if i % 2 == 0]
  #list comps4 pythonic
  print [_treament(i, el) for i, el in enumerate(range(10))]

output:
24
[(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4)]
[0, 2, 4, 6, 8]
[0, 2, 4, 6, 8]
['0: 0', '1: 1', '2: 2', '3: 3', '4: 4', '5: 5', '6: 6', '7: 7', '8: 8', '9: 9']

没错,就是这么优雅简单。

(2) 生成器表达式在python2.2引入,它使用'lazy evaluation'思想,因此在使用内存上更有效。引用python核心编程中计算文件中最长的行的例子:

f = open('/etc/motd, 'r')
longest = max(len(x.strip()) for x in f)
f.close()
return longest

这种实现简洁而且不需要把文件文件所有行读入内存。

(3) python在2.4引入装饰器,又是一个让人兴奋的特性,简单来说它使得函数和方法封装(接收一个函数并返回增强版本的函数)更容易阅读、理解。'@'符号是装饰器语法,你可以装饰一个函数,记住调用结果供后续使用,这种技术被称为memoization的,下面是用装饰器完成一个cache功能:

import time
import hashlib
import pickle
from itertools import chain
cache = {}
def is_obsolete(entry, duration):
  return time.time() - entry['time'] > duration

def compute_key(function, args, kw):
  #序列化/反序列化一个对象,这里是用pickle模块对函数和参数对象进行序列化为一个hash值
  key = pickle.dumps((function.func_name, args, kw))
  #hashlib是一个提供MD5和sh1的一个库,该结果保存在一个全局字典中
  return hashlib.sha1(key).hexdigest()

def memoize(duration=10):
  def _memoize(function):
    def __memoize(*args, **kw):
      key = compute_key(function, args, kw)

      # do we have it already
      if (key in cache and
        not is_obsolete(cache[key], duration)):
        print 'we got a winner'
        return cache[key]['value']

      # computing
      result = function(*args, **kw)
      # storing the result
      cache[key] = {'value': result,-
              'time': time.time()}
      return result
    return __memoize
  return _memoize

@memoize()
def very_very_complex_stuff(a, b, c):
  return a + b + c

print very_very_complex_stuff(2, 2, 2)
print very_very_complex_stuff(2, 2, 2)

@memoize(1)
def very_very_complex_stuff(a, b):
  return a + b

print very_very_complex_stuff(2, 2)
time.sleep(2)
print very_very_complex_stuff(2, 2)

运行结果:

6

we got a winner

6

4

4

装饰器在很多场景用到,比如参数检查、锁同步、单元测试框架等,有兴趣的人可以自己进一步学习。

3.  善用python强大的自省能力(属性和描述符):自从使用了python,真的是惊讶原来自省可以做的这么强大简单,关于这个话题,限于内容比较多,这里就不赘述,后续有时间单独做一个总结,学习python必须对其自省好好理解。

三、 编码小技巧
1、在python3之前版本使用xrange代替range,因为range()直接返回完整的元素列表而xrange()在序列中每次调用只产生一个整数元素,开销小。(在python3中xrange不再存在,里面range提供一个可以 遍历任意长度的范围的iterator)
2、if done is not None比语句if done != None更快;
3、尽量使用"in"操作符,简洁而快速: for i in seq: print i
4、'x < y < z'代替'x < y and y < z';
5、while 1要比while True更快, 因为前者是单步运算,后者还需要计算;
6、尽量使用build-in的函数,因为这些函数往往很高效,比如add(a,b)要优于a+b;
7、在耗时较多的循环中,可以把函数的调用改为内联的方式,内循环应该保持简洁。
8、使用多重赋值来swap元素:

x, y = y, x  # elegant and efficient

而不是:

  temp = x
      x = y
      y = temp 

9. 三元操作符(python2.5后):V1 if X else V2,避免使用(X and V1) or V2,因为后者当V1=""时,就会有问题。

10. python之switch case实现:因为switch case语法完全可用if else代替,所以python就没  有switch case语法,但是我们可以用dictionary或lamda实现:

switch case结构:

switch (var)
{
  case v1: func1();
  case v2: func2();
  ...
  case vN: funcN();
  default: default_func();
}
dictionary实现:

values = {
      v1: func1,
      v2: func2,
      ...
      vN: funcN,
     }
values.get(var, default_func)()
lambda实现:

{
 '1': lambda: func1,
 '2': lambda: func2,
 '3': lambda: func3
}[value]()

用try…catch来实现带Default的情况,个人推荐使用dict的实现方法。

这里只总结了一部分python的实践方法,希望这些建议可以帮助到每一位使用python的同学,优化性能不是重点,高效解决问题,让自己写的代码更加易于维护!

(0)

相关推荐

  • python中的编码知识整理汇总

    问题 在平时工作中,遇到了这样的错误: UnicodeDecodeError: 'ascii' codec can't decode byte 想必大家也都碰到过,很常见 .于是决定对python的编码做一个整理和学习. 基础知识 在python2.x中,有两种数据类型,unicode和str,这两个都是basestring的子类 >>> a = '中' >>> type(a) <type 'str'> >>> isinstance(a,b

  • Python编码爬坑指南(必看)

    自己最近有在学习python,这实在是一门非常短小精悍的语言,很喜欢这种语言精悍背后又有强大函数库支撑的语言.可是刚接触不久就遇到了让人头疼的关于编码的问题,在网上查了很多资料现在在这里做一番总结,权当一个记录也为后来的兄弟姐妹们服务,如果可以让您少走一些弯路本人将倍感荣幸. 先来描述下现象吧: import os for i in os.listdir("E:\Torchlight II"): print i 代码很简单我们使用os的listdir函数遍历了E:\Torchlight

  • 深入浅析Python字符编码

    Python的字符串编码规则一直让我很头疼,花了点时间研究了下,并不复杂.主要涉及的内容有常用的字符编码的特点,并介绍了在python2.x中如何与编码问题作战,本文关于Python的内容仅适用于2.x,3.x中str和unicode有翻天覆地的变化,具体请查阅相关资料. 1. 字符编码简介 1.1. ASCII ASCII(American Standard Code for Information Interchange),是一种单字节的编码.计算机世界里一开始只有英文,而单字节可以表示25

  • python黑魔法之编码转换

    我们在使用其他语言的库做编码转换时,对于无法理解的字符,通常的处理也只有两种(或三种): 抛异常 替换成替代字符 跳过 但是在复杂的现实世界中,由于各种不靠谱,我们处理的文本总会出现那么些不和谐因素,比如混合编码.在这种情况下,又回到了上面的处理办法. 那么问题来了,python有没有更好地办法呢? 答案是,有! python的编码转换流程实际上是两段式转换: source -> unicode -> dest 首先将字符串从原始编码转换成unicode.再将unicode转换成目标编码. 第

  • 简单解决Python文件中文编码问题

    读写中文 需要读取utf-8编码的中文文件,先利用sublime text软件将它改成无DOM的编码,然后用以下代码: with codecs.open(note_path, 'r+','utf-8') as f: line=f.readline() print line 这样就可以正确地读出文件里面的中文字符了. 同样的,如果要在创建的文件中写入中文,最好也和上面差不多: with codecs.open(st,'a+','utf-8') as book_note: book_note.wri

  • python编码最佳实践之总结

    相信用python的同学不少,本人也一直对python情有独钟,毫无疑问python作为一门解释性动态语言没有那些编译型语言高效,但是python简洁.易读以及可扩展性等特性使得它大受青睐. 工作中很多同事都在用python,但往往很少有人关注它的性能和惯用法,一般都是现学现用,毕竟python不是我们的主要语言,我们一般只是使用它来做一些系统管理的工作.但是我们为什么不做的更好呢?python zen中有这样一句:There should be one-- and preferably onl

  • 10个微妙的Java编码最佳实践

    这是一个比Josh Bloch的Effective Java规则更精妙的10条Java编码实践的列表.和Josh Bloch的列表容易学习并且关注日常情况相比,这个列表将包含涉及API/SPI设计中不常见的情况,可能有很大影响. 我在编写和维护jOOQ(Java中内部DSL建模的SQL)时遇到过这些.作为一个内部DSL,jOOQ最大限度的挑战了Java的编译器和泛型,把泛型,可变参数和重载结合在一起,Josh Bloch可能不会推荐的这种太宽泛的API. 让我与你分享10个微妙的Java编码最佳

  • PHP 与 UTF-8 的最佳实践详细介绍

    <PHP中的字符串.编码.UTF-8>一文中描述了一些列的基础知识,比较枯燥,现在来说点有用的--PHP 字符串处理的最佳实践,本文是"PHP.字符串.编码.UTF-8"相关知识的第二部分.先说结论-- 在 PHP 中的各个方面使用 UTF-8 编码. PHP 语言层面是不支持 Unicode字符集的,但是可以通过 UTF-8 编码能处理大部分问题. 最佳实践就是明确知道输入编码(不知道就检测),内部统一转换为 UTF-8 编码,输出编码也统一是 UTF-8编码. PHP

  • TensorFlow搭建神经网络最佳实践

    一.TensorFLow完整样例 在MNIST数据集上,搭建一个简单神经网络结构,一个包含ReLU单元的非线性化处理的两层神经网络.在训练神经网络的时候,使用带指数衰减的学习率设置.使用正则化来避免过拟合.使用滑动平均模型来使得最终的模型更加健壮. 程序将计算神经网络前向传播的部分单独定义一个函数inference,训练部分定义一个train函数,再定义一个主函数main. 完整程序: #!/usr/bin/env python3 # -*- coding: utf-8 -*- ""&

  • Java日志API管理最佳实践详解

    概述 对于现在的应用程序来说,日志的重要性是不言而喻的.很难想象没有任何日志记录功能的应用程序运行在生产环境中.日志所能提供的功能是多种多样的,包括记录程序运行时产生的错误信息.状态信息.调试信息和执行时间信息等.在生产环境中,日志是查找问题来源的重要依据.应用程序运行时的产生的各种信息,都应该通过日志 API 来进行记录. 很多开发人员习惯于使用 System.out.println.System.err.println 以及异常对象的 printStrackTrace 方法来输出相关信息.这

  • 构建Vue大型应用的10个最佳实践(小结)

    这些是我构建大型Vue项目得出的最佳实践,这些技巧将帮助你更高效的编码,并且使其更容易维护和协作. 在我今年的自由职业生涯中我有幸开发了一些大型Vue程序.我所说的这些项目使用了大量Vuex stores

  • React 条件渲染最佳实践小结(7种)

    在 React 中,条件渲染可以通过多种方式,不同的使用方式场景取决于不同的上下文. 在本文中,我们将讨论所有可用于为 React 中的条件渲染编写更好的代码的方法. 条件渲染在每种编程语言(包括 javascript)中都是的常见功能. 在 javascript 中,我们通常使用if else 语句,switch case语句和三元运算符编写条件渲染. 以上所有这些方法都适用于 React. 但是问题是,我们如何才能有效地使用它们? 像你知道的那样,React 具有 JSX 标记,通常我们需要

  • MySQL 的 21 个规范、优化最佳实践!

    前言 每一个好习惯都是一笔财富,本文分 SQL 后悔药,SQL 性能优化,SQL 规范优雅三个方向,分享写 SQL 的 21 个好习惯和最佳实践! 写完SQL先explain查看执行计划(SQL性能优化) 日常开发写 SQL 的时候,尽量养成这个好习惯呀:写完 SQL 后,用 explain 分析一下,尤其注意走不走索引. 操作 delete 或者 update 语句,加个 limit(SQL后悔药) 在执行删除或者更新语句,尽量加上 limit,以下面的这条 SQL 为例吧: delete f

  • 提升Python编码能力的3个重要概念

    目录 1. 引言 2. 上下文管理器 3. 类型提示 4. 浅拷贝和深拷贝 5. 总结 1. 引言 Python 是由Guido Van Rossum 于 1991 年创建的一种编程语言.在过去的几年里,越来越多的公司开始使用 Python 进行项目开发,主要是因为它语法简单,有很多方便使用的第三方库.本文主要对Python中一些概念进行抽象总结,理解并使用它们可以极大地提升大家的编码能力. 2. 上下文管理器 上下文管理器允许我们以最佳方式分配和释放上下文的资源.对于某些资源的管理上,如果处理

  • vue中使用Axios最佳实践方式

    目录 1.前言 2.使用 2.1安装 2.2基本用例 2.2.1 get请求 2.2.2post请求 3.配置 3.1语法 3.2别名 4.Axios实例 4.1语法 4.2请求配置 4.3响应的配置 配置的优先级 5.拦截器 6.错误拦截 7.取消请求 8.完整封装 建立http.ts文件编写clas Http类 9.总结 1.前言 最近在写vue3的项目,需要重新搭建脚手架并且使用网络请求接口,对于js的网络请求接口的一般有几种常用的方式: fetch XMLHttpRequests aja

随机推荐