Python高效编程技巧

下面我挑选出的这几个技巧常常会被人们忽略,但它们在日常编程中能真正的给我们带来不少帮助。

1. 字典推导(Dictionary comprehensions)和集合推导(Set comprehensions)
大多数的Python程序员都知道且使用过列表推导(list comprehensions)。如果你对list comprehensions概念不是很熟悉——一个list comprehension就是一个更简短、简洁的创建一个list的方法。

>>> some_list = [1, 2, 3, 4, 5]
>>> another_list = [ x + 1 for x in some_list ]
>>> another_list
[2, 3, 4, 5, 6]

自从python 3.1 (甚至是Python 2.7)起,我们可以用同样的语法来创建集合和字典表:


代码如下:

>>> # Set Comprehensions
>>> some_list = [1, 2, 3, 4, 5, 2, 5, 1, 4, 8]
>>> even_set = { x for x in some_list if x % 2 == 0 }
>>> even_set
set([8, 2, 4])
>>> # Dict Comprehensions
>>> d = { x: x % 2 == 0 for x in range(1, 11) }
>>> d
{1: False, 2: True, 3: False, 4: True, 5: False, 6: True, 7: False, 8: True, 9: False, 10: True}

在第一个例子里,我们以some_list为基础,创建了一个具有不重复元素的集合,而且集合里只包含偶数。而在字典表的例子里,我们创建了一个key是不重复的1到10之间的整数,value是布尔型,用来指示key是否是偶数。
这里另外一个值得注意的事情是集合的字面量表示法。我们可以简单的用这种方法创建一个集合:


代码如下:

>>> my_set = {1, 2, 1, 2, 3, 4}
>>> my_set
set([1, 2, 3, 4])

而不需要使用内置函数set()。

2. 计数时使用Counter计数对象。
这听起来显而易见,但经常被人忘记。对于大多数程序员来说,数一个东西是一项很常见的任务,而且在大多数情况下并不是很有挑战性的事情——这里有几种方法能更简单的完成这种任务。
Python的collections类库里有个内置的dict类的子类,是专门来干这种事情的:


代码如下:

>>> from collections import Counter
>>> c = Counter('hello world')
>>> c
Counter({'l': 3, 'o': 2, ' ': 1, 'e': 1, 'd': 1, 'h': 1, 'r': 1, 'w': 1})
>>> c.most_common(2)
[('l', 3), ('o', 2)]

3. 漂亮的打印出JSON
JSON是一种非常好的数据序列化的形式,被如今的各种API和web service大量的使用。使用python内置的json处理,可以使JSON串具有一定的可读性,但当遇到大型数据时,它表现成一个很长的、连续的一行时,人的肉眼就很难观看了。
为了能让JSON数据表现的更友好,我们可以使用indent参数来输出漂亮的JSON。当在控制台交互式编程或做日志时,这尤其有用:


代码如下:

>>> import json
>>> print(json.dumps(data)) # No indention
{"status": "OK", "count": 2, "results": [{"age": 27, "name": "Oz", "lactose_intolerant": true}, {"age": 29, "name": "Joe", "lactose_intolerant": false}]}
>>> print(json.dumps(data, indent=2)) # With indention
{
"status": "OK",
"count": 2,
"results": [
{
"age": 27,
"name": "Oz",
"lactose_intolerant": true
},
{
"age": 29,
"name": "Joe",
"lactose_intolerant": false
}
]
}

同样,使用内置的pprint模块,也可以让其它任何东西打印输出的更漂亮。

4. 创建一次性的、快速的小型web服务
有时候,我们需要在两台机器或服务之间做一些简便的、很基础的RPC之类的交互。我们希望用一种简单的方式使用B程序调用A程序里的一个方法——有时是在另一台机器上。仅内部使用。
我并不鼓励将这里介绍的方法用在非内部的、一次性的编程中。我们可以使用一种叫做XML-RPC的协议 (相对应的是这个Python库),来做这种事情。
下面是一个使用SimpleXMLRPCServer模块建立一个快速的小的文件读取服务器的例子:


代码如下:

from SimpleXMLRPCServer import SimpleXMLRPCServer

def file_reader(file_name):
with open(file_name, 'r') as f:
return f.read()

server = SimpleXMLRPCServer(('localhost', 8000))
server.register_introspection_functions()
server.register_function(file_reader)
server.serve_forever()

客户端:


代码如下:

import xmlrpclib
proxy = xmlrpclib.ServerProxy('http://localhost:8000/')
proxy.file_reader('/tmp/secret.txt')

我们这样就得到了一个远程文件读取工具,没有外部的依赖,只有几句代码(当然,没有任何安全措施,所以只可以在家里这样做)。

5. Python神奇的开源社区
这里我提到的几个东西都是Python标准库里的,如果你安装了Python,你就已经可以这样使用了。而对于很多其它类型的任务,这里有大量的社区维护的第三方库可供你使用。
下面这个清单是我认为的好用且健壮的开源库的必备条件:

好的开源库必须…

•包含一个很清楚的许可声明,能适用于你的使用场景。
•开发和维护工作很活跃(或,你能参与开发维护它。)
•能够简单的使用pip安装或反复部署。
•有测试套件,具有足够的测试覆盖率。
如果你发现一个好的程序库,符合你的要求,不要不好意思————大部分的开源项目都欢迎捐赠代码和欢迎提供帮助——即使你不是一个Python高手。

原文: http://www.aqee.net/improving-your-python-productivity/

(0)

相关推荐

  • python小技巧之批量抓取美女图片

    其中用到urllib2模块和正则表达式模块.下面直接上代码: [/code]#!/usr/bin/env python#-*- coding: utf-8 -*-#通过urllib(2)模块下载网络内容import urllib,urllib2,gevent#引入正则表达式模块,时间模块import re,timefrom gevent import monkey monkey.patch_all() def geturllist(url):    url_list=[]    print ur

  • 让python同时兼容python2和python3的8个技巧分享

    python邮件列表里有人发表言论说"python3在10内都无法普及".在我看来这样的观点有些过于悲观,python3和python2虽然不兼容,但他们之间差别并没很多人想像的那么大.你只需要对自己的代码稍微做些修改就可以很好的同时支持python2和python3的.下面我将简要的介绍一下如何让自己的python代码如何同时支持python2和python3. 一.放弃python 2.6之前的python版本 python 2.6之前的python版本缺少一些新特性,会给你的迁移

  • Python编程语言的35个与众不同之处(语言特征和使用技巧)

    一.Python介绍 从我开始学习Python时我就决定维护一个经常使用的"窍门"列表.不论何时当我看到一段让我觉得"酷,这样也行!"的代码时(在一个例子中.在StackOverflow.在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中.这篇文章是清理过列表的一部分.如果你是一个有经验的Python程序员,尽管你可能已经知道一些,但你仍能发现一些你不知道的.如果你是一个正在学习Python的C.C++或Java程序员,或者刚开始学习编程,那么你会像

  • Python 过滤字符串的技巧,map与itertools.imap

    具体的实例 我们需要在目录中遍历,包括子目录(哈哈),找出所有后缀为:rmvb ,avi ,pmp 的文件.(天哪?!你要干什么?这可是我的隐私啊--) 复制代码 代码如下: import os def anyTrue(predicate, sequence): return True in map(predicate, sequence) def filterFiles(folder, exts): for fileName in os.listdir(folder): if os.path.

  • Python 文件操作技巧(File operation) 实例代码分析

    常用的module是 os ,os.path 和shutil,所以要先引入他们. python遍历文件夹和文件 这个也许是最常用的功能,如下: 复制代码 代码如下: import os  import os.path rootdir = "D:\\programmer\\training"  for parent, dirnames, filenames in os.walk(rootdir):      #case 1:      for dirname in dirnames: 

  • Python中Collection的使用小技巧

    本文所述实例来自独立软件开发者 Alex Marandon,在他的博客中曾介绍了数个关于 Python Collection 的实用小技巧,在此与大家分享.供大家学习借鉴之用.具体如下: 1.判断一个 list 是否为空 传统的方式: if len(mylist): # Do something with my list else: # The list is empty 由于一个空 list 本身等同于 False,所以可以直接: if mylist: # Do something with

  • Python语言技巧之三元运算符使用介绍

    python不支持C/C++中的三元操作符 ?:,替代的方法是 ...if... else...举例,用下面的语法实现求三个数的最小值.nD1 if nD1 < ( nD2 if nD2<nD3 else nD3) else (nD2 if nD2 < nD3 else nD3) python三元运算符的正确方法 因为下周要用php写项目,所以周末在家里重新看php的语法,看到三元描述符,突然想起来python是没有三元描述符的,印象中依稀记得有模拟的实现,于是上网上搜了一下. (对应C

  • 初学Python实用技巧两则

    本文记录了初学Python常用的两则实用技巧,分享给大家供大家参考之用.具体如下: 1.可变参数 示例代码如下: >>> def powersum(power, *args): ... '''''Return the sum of each argument raised to specified power.''' ... total = 0 ... for i in args: ... total += pow(i, power) ... return total ... >&

  • Python 代码性能优化技巧分享

    如何进行 Python 性能优化,是本文探讨的主要问题.本文会涉及常见的代码优化方法,性能优化工具的使用以及如何诊断代码的性能瓶颈等内容,希望可以给 Python 开发人员一定的参考. Python 代码优化常见技巧 代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下使得程序的运行效率更高,根据 80/20 原则,实现程序的重构.优化.扩展以及文档相关的事情通常需要消耗 80% 的工作量.优化通常包含两方面的内容:减小代码的体积,提高代码的运行效率. 改进算法,选择合适的数据结构 一个

  • Python 除法小技巧

    复制代码 代码如下: from __future__ import division print 7/3 输出结果: 2.3333333333

  • Python splitlines使用技巧

    复制代码 代码如下: mulLine = """Hello!!! Wellcome to Python's world! There are a lot of interesting things! Enjoy yourself. Thank you!""" print ''.join(mulLine.splitlines()) print '------------' print ''.join(mulLine.splitlines(True)

随机推荐