深入了解C++智能指针的使用

目录
  • 一、C++11智能指针概述
  • 二、C++98中的智能指针
  • 三、C++11中的智能指针
    • 1.unique_ptr
    • 2.shared_ptr
    • 3.weak_ptr

一、C++11智能指针概述

在C++中,动态内存的使用时有一定的风险的,因为它没有垃圾回收机制,很容易导致忘记释放内存的问题,具体体现在异常的处理上。想要释放掉抛异常的程序的一些内存,往往需要多次抛异常,这种处理方式是十分麻烦的。

智能指针的本质就是使用一个对象来接管一段开辟的空间,在该对象在销毁的时候,自动调用析构函数来释放这段内存。

因此智能指针的本质是一个类,类中最主要的对象是一个指针,该类的析构函数就是销毁该指针指向的空间,使用智能指针的本质就是将一个指向动态开辟空间的指针赋给该类中的指针。不过这样的处理过程会有一定的问题,比如浅拷贝等。

C++标准库提供了两种智能指针类型来管理动态对象,由于该对象的行为酷似指针,所以称为智能指针。它们分别是shared_ptr以及unique_ptr。还提供了一个weak_ptr它主要是为了解决shared_ptr的循环引用问题。

shared_ptr允许多个指针指向同一个对象,unique_ptr则独占所指向的对象。

二、C++98中的智能指针

在很早以前,大佬们就已经认识到了内存释放的问题,因此为标准库中增加了一个类:auto_str。它有着和unique_str智能指针类似的功能,它虽然成功的将一个开辟的资源塞给了一个类,不过存在很严重的问题,一些公司已经明令禁止使用它了:

    auto_ptr<int> sptr1(new int);
    auto_ptr<int> sptr2(sptr1);
    *sptr1;

此时如果对sptr1进行解引用操作,会发生报错。要了解报错的原因,我们需要了解它的大致底层原理,作为第一个出现的智能指针,它只是简单执行了将资源转移,以及在析构中加入资源释放,还有一些解引用的运算符重载函数:

template<class T>
class MyAuto
{
private:
    T* _ptr;
public:
    MyAuto(T* ptr)
        :_ptr(ptr)
    {}
    ~MyAuto()
    {
        if (_ptr != nullptr)
        {
            cout << "delete: " << _ptr << endl;
            delete _ptr;
            _ptr = nullptr;
        }
    }
    MyAuto(MyAuto<T>& Ptr)
    {
        _ptr = Ptr._ptr;
        Ptr._ptr = nullptr;
    }
    T& operator*()
    {
        return *_ptr;
    }
    T* operator->()
    {
        return _ptr;
    }
};

可以发现,最终是浅拷贝的锅。因为在进行资源转移的时候,必须将原来的指针置为nullptr,否则析构的时候会析构两次。而将其置为nullptr之后再要使用该指针对其进行解引用就会发生崩溃。

三、C++11中的智能指针

1.unique_ptr

unique_ptr处理上述问题简单而粗暴,即不让进行拷贝操作:

    unique_ptr<int> sptr1(new int);
    unique_ptr<int> sptr2(sptr1);

直接进行报错处理。

我们也可以猜测出它的实现方式,那就是在拷贝构造和赋值构造的后面加上delete关键字。

template<class T>
class MyUnique
{
private:
    T* _ptr;
public:
    MyUnique(T* ptr)
        :_ptr(ptr)
    {}
    ~MyUnique()
    {
        if (_ptr != nullptr)
        {
            cout << "delete: " << _ptr << endl;
            delete _ptr;
            _ptr = nullptr;
        }
    }
    MyUnique(MyUnique<T>& Ptr) = delete;
    MyUnique& operator=(MyUnique<T>& Ptr) = delete;
    T& operator*()
    {
        return *_ptr;
    }
    T* operator->()
    {
        return _ptr;
    }
};

2.shared_ptr

(1)引用计数器

shared_ptr是使用最多的智能指针,即它可以进行拷贝构造。

  • 每一个智能指针类都有一个专门用于记录该智能指针指向的资源的指针个数的计数器。
  • 当多了一个智能指针指向该资源,则对所有指向该资源的智能指针的计数器进行++操作,当一个智能指针不再指向该资源的时候·,所有指向该资源的智能指针的计数器进行–操作。
  • 当某一个智能指针将其–到0的时候由该智能指针释放该资源。从而解决了不让拷贝的根本问题:防止资源释放多次。
  • 同时智能指针有一个use_count函数来返回计数器的值。
    shared_ptr<int> sptr1(new int(1));
    shared_ptr<int> sptr2(sptr1);
    shared_ptr<int> sptr3(sptr2);
    cout << sptr1.use_count() << endl;
    cout << sptr2.use_count() << endl;
    cout << sptr2.use_count() << endl;
    cout << "资源释放成功" << endl;

(2)线程安全

涉及到共享,我们不得不将线程安全问题考虑进来,很显然shared_ptr无论是要管理的资源的使用,还是要指向的该资源对应的计数器的加减操作,都不是线程安全的。

  • 对于要管理的资源来说,如果多个线程不去使用该资源,是不会产生问题的。因此如果需要使用该资源由于代码量的不同位置,C++为了保证性能,希望用户来自己保证它的线程安全,即由用户自己来加锁解锁。
  • 而对于资源计数器来说,只要增加一个智能指针就会++,减少一个就会–,其逻辑明确简单,因此shared_ptr为其加了锁。
template<class T>
class MyShared
{
private:
    T* _ptr;
    mutex* _pmtx;
    int* _pcount;
public:
    MyShared(T* ptr)
        :_ptr(ptr),
        _pmtx(new mutex),
        _pcount(new int(1))
    {}
    void AddCount()
    {
        _pmtx->lock();
        (*_pcount)++;
        _pmtx->unlock();
    }
    void DelCount()
    {
        _pmtx->lock();
        bool flag = false;
        if (--(*_pcount) == 0)
        {
            if (_ptr != nullptr)
            {
                cout << "delete: " << _ptr << endl;
                delete _ptr;
                _ptr = nullptr;
            }
            delete _pcount;//当为0的时候删除计数器
            _pcount = nullptr;
            flag = true;
        }
        _pmtx->unlock();
        if (flag == true)
        {
            delete _pmtx;
            _pmtx = nullptr;
        }
    }
    MyShared(MyShared<T>& sp)
        :_ptr(sp._ptr),
        _pcount(sp._pcount),
        _pmtx(sp._pmtx)
    {
        AddCount();
    }
    MyShared& operator=(MyShared<T>& sp)
    {
        if (_ptr != sp._ptr)
        {
            DelCount();//释放管理的旧资源
            _ptr = sp._ptr;
            _pcount = sp._pcount;
            _pmtx = sp._pmtx;
            AddCount();//对管理的新资源的计数器进行++
        }
        return *this;
    }
    //获取引用计数
    int use_count()
    {
        return *_pcount;
    }
    T& operator*()
    {
        return *_ptr;
    }
    T* operator->()
    {
        return _ptr;
    }
};

(3)删除器

如果不是new出来的对象如何通过智能指针进行管理呢?其实shared_ptr设计了一个删除器来解决这一问题。

template<class T>
struct FreeFunc
{
    void operator()(T* ptr)
    {
        cout << "free:" << ptr << endl;
        free(ptr);
    }
};
template<class T>
struct DeleteArrayFunc
{
    void operator()(T* ptr)
    {
        cout << "delete[]" << ptr << endl;
        delete[] ptr;
    }

​​​​​​​};

此时使用malloc进行初始化的时候就也可以进行清理空间了:

    FreeFunc<int> freeFunc;
    shared_ptr<int> sp1((int*)malloc(4), freeFunc);
    DeleteArrayFunc<int> deleteArrayFunc;
    shared_ptr<int> sp2((int*)malloc(4), deleteArrayFunc);

3.weak_ptr

(1)shared_ptr中的循环调用问题

循环调用问题在一些特殊的情况下会产生:

1.node1和node2两个智能指针指向两个节点,引用计数变成1,我们不需要手动delete。

2.node1的_next指向node2,node2的_prev指向node1,引用计数变成2。

3.node1和node2析构,引用计数减到1,但是_next还指向下一个节点。但是_prev还指向上一个节点。

4.也就是说_next析构了,node2就释放了。

5.也就是说_prev析构了,node1就释放了。

6.但是_next属于node的成员,node1释放了,_next才会析构,而node1由_prev管理,_prev属于node2成员,所

以这就叫循环引用,谁也不会释放。

struct ListNode
{
    shared_ptr<ListNode> _next;
    shared_ptr<ListNode> _prev;
};
    shared_ptr<ListNode> node1(new ListNode);
    shared_ptr<ListNode> node2(new ListNode);
    node1 ->_next = node2;
    node2 -> _prev = node1;

通俗来讲,就是此时如果想释放node2,那么就需要delete(n1->next),但是如果要释放n1->next就必须delete(n1),而要deleten1又需要delete(node2->prev)因此如果不让prev指向n就没有问题。

(2)weak_ptr

struct ListNode
{
	std::weak_ptr<ListNode> _next;
	std::weak_ptr<ListNode> _prev;
	int _val;
	~ListNode()
	{
		cout << "~ListNode()" << endl;
	}
};
int main()
{
	std::shared_ptr<ListNode> node1(new ListNode);
	std::shared_ptr<ListNode> node2(new ListNode);

	cout << node1.use_count() << endl;
	cout << node2.use_count() << endl;
	node1->_next = node2;
	node2->_prev = node1;
	//...
	cout << node1.use_count() << endl;
	cout << node2.use_count() << endl;
	return 0;
}

以上就是深入了解C++智能指针的使用的详细内容,更多关于C++智能指针的资料请关注我们其它相关文章!

(0)

相关推荐

  • C++超详细讲解智能指针

    目录 一.内存泄漏-永恒的话题 二.深度思考 三.智能指针分析 四.小结 一.内存泄漏-永恒的话题 动态申请堆空间,用完后不归还 C++ 语言中没有垃圾回收的机制 指针无法控制所指堆空间的生命周期 下面看一段内存泄漏的代码: #include <iostream> #include <string> using namespace std; class Test { int i; public: Test(int i) { this->i = i; } int value()

  • 一文掌握 C++ 智能指针的使用方法

    目录 一.RAII 与引用计数 二.std::shared_ptr 三.std::unique_ptr 四.std::weak_ptr 五.总结 一.RAII 与引用计数 了解 Objective-C/Swift 的程序员应该知道引用计数的概念.引用计数这种计数是为了防止内存泄露而产生的. 基本想法是对于动态分配的对象,进行引用计数,每当增加一次对同一个对象的引用,那么引用对象的引用计数就会增加一次, 每删除一次引用,引用计数就会减一,当一个对象的引用计数减为零时,就自动删除指向的堆内存. 在传

  • 一篇文章带你了解C++智能指针详解

    目录 为什么要有智能指针? 智能指针的使用及原理 RALL shared_ptr的使用注意事项 创建 多个 shared_ptr 不能拥有同一个对象 shared_ptr 的销毁 shared_ptr 的线程安全问题 shared_ptr 的循环引用 unique_ptr的使用 unique_ptr 总结 为什么要有智能指针? 因为普通的指针存在以下几个问题: 资源泄露 野指针 未初始化 多个指针指向同一块内存,某个指针将内存释放,别的指针不知道 异常安全问题 如果在 malloc和free 或

  • C++智能指针详解

    目录 一. unique_ptr独占指针 特点 创建方式 传递方式 简单使用 隐藏危险 二. shared_ptr 计数指针 特点 传递方式 隐藏危险 三. weak_ptr 优缺点: 智能指针由原始指针的封装,优点是可以自动分配内存,不用担心内存泄漏问题. 用于解决独占/共享所有权指针的释放,传输等问题. 但是没有原始指针方便. 一. unique_ptr独占指针 特点 都是围绕独占展开 特点一: 如其名,独占.也就是说同一个内存空间同时只能有一个指针来管理. int* pi = new in

  • C++深入分析讲解智能指针

    目录 1.简介 2.unique_ptr指针(独占指针) 3.shared_ptr指针(共享所有权) 4.weak_ptr(辅助作用) 5.自实现初级版智能指针 6.总结 1.简介 程序运行时存在静态空间.栈和堆区,用堆来存储动态分配空间的对象即那些在程序运行时分配空间的对象,若该对象不再使用,我们必须显式的销毁它们,避免内存泄漏. 智能指针是一个可以像指针一样工作的对象,有unique_ptr(独占指针),shared_ptr与weak_ptr等智能指针,定义在<memory>头文件中,可以

  • C++ 中boost::share_ptr智能指针的使用方法

    C++ 中boost::share_ptr智能指针的使用方法 最近项目中使用boost库的智能指针,感觉智能指针还是蛮强大的,在此贴出自己学习过程中编写的测试代码,以供其他想了解boost智能指针的朋友参考,有讲得不正确之处欢迎指出讨论.当然,使用boost智能指针首先要编译boost库,具体方法可以网上查询,在此不再赘述. 智能指针能够使C++的开发简单化,主要是它能够自动管理内存的释放,而且能够做更多的事情,即使用智能指针,则可以再代码中new了之后不用delete,智能指针自己会帮助你管理

  • C++中auto_ptr智能指针的用法详解

    智能指针(auto_ptr) 这个名字听起来很酷是不是?其实auto_ptr 只是C++标准库提供的一个类模板,它与传统的new/delete控制内存相比有一定优势,但也有其局限.本文总结的8个问题足以涵盖auto_ptr的大部分内容. auto_ptr是什么? auto_ptr 是C++标准库提供的类模板,auto_ptr对象通过初始化指向由new创建的动态内存,它是这块内存的拥有者,一块内存不能同时被分给两个拥有者.当auto_ptr对象生命周期结束时,其析构函数会将auto_ptr对象拥有

  • 关于c++ 智能指针及 循环引用的问题

    c++智能指针介绍 由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete,比如流程太复杂,最终导致没有 delete,异常导致程序过早退出,没有执行 delete 的情况并不罕见,并造成内存泄露.如此c++引入 智能指针 ,智能指针即是C++ RAII的一种应用,可用于动态资源管理,资源即对象的管理策略. 智能指针在 <memory>标头文件的 std 命名空间中定义. 它们对 RAII 或 获取资源即初始化 编程惯用法至关重要. RAII 的主要原则是

  • C++ 智能指针深入解析

    1. 为什么需要智能指针?简单的说,智能指针是为了实现类似于Java中的垃圾回收机制.Java的垃圾回收机制使程序员从繁杂的内存管理任务中彻底的解脱出来,在申请使用一块内存区域之后,无需去关注应该何时何地释放内存,Java将会自动帮助回收.但是出于效率和其他原因(可能C++设计者不屑于这种傻瓜氏的编程方式),C++本身并没有这样的功能,其繁杂且易出错的内存管理也一直为广大程序员所诟病. 更进一步地说,智能指针的出现是为了满足管理类中指针成员的需要.包含指针成员的类需要特别注意复制控制和赋值操作,

  • 浅析Boost智能指针:scoped_ptr shared_ptr weak_ptr

    一. scoped_ptrboost::scoped_ptr和std::auto_ptr非常类似,是一个简单的智能指针,它能够保证在离开作用域后对象被自动释放.下列代码演示了该指针的基本应用: 复制代码 代码如下: #include <string>#include <iostream>#include <boost/scoped_ptr.hpp> class implementation{public:    ~implementation() { std::cout

  • C++智能指针shared_ptr分析

    C++智能指针shared_ptr分析 概要: shared_ptr是c++智能指针中适用场景多,功能实现较多的智能指针.它采取引用计数的方法来实现释放指针所指向的资源.下面是我代码实现的基本功能. 实例代码: template<class T> class sharedptr { public: sharedptr(T* ptr) :_ptr(ptr) , _refCount(new int(1)) {} sharedptr(sharedptr<T>& sp) :_ptr

  • C++智能指针读书笔记

    最近在补看<C++ Primer Plus>第六版,这的确是本好书,其中关于智能指针的章节解析的非常清晰,一解我以前的多处困惑.C++面试过程中,很多面试官都喜欢问智能指针相关的问题,比如你知道哪些智能指针?shared_ptr的设计原理是什么?如果让你自己设计一个智能指针,你如何完成?等等--.而且在看开源的C++项目时,也能随处看到智能指针的影子.这说明智能指针不仅是面试官爱问的题材,更是非常有实用价值. C++通过一对运算符 new 和 delete 进行动态内存管理,new在动态内存中

  • 智能指针与弱引用详解

    在android 中可以广泛看到的template<typename T> class Sp 句柄类实际上是android 为实现垃圾回收机制的智能指针.智能指针是c++ 中的一个概念,因为c++ 本身不具备垃圾回收机制,而且指针也不具备构造函数和析构函数,所以为了实现内存( 动态存储区) 的安全回收,必须对指针进行一层封装,而这个封装就是智能指针,其实说白了,智能指针就是具备指针功能同时提供安全内存回收的一个类.当然,智能指针的功能还不只这些,想了解更多大家可以去研究下- 智能指针有很多实现

  • C++智能指针实例详解

    本文通过实例详细阐述了C++关于智能指针的概念及用法,有助于读者加深对智能指针的理解.详情如下: 一.简介 由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete.程序员忘记 delete,流程太复杂,最终导致没有 delete,异常导致程序过早退出,没有执行 delete 的情况并不罕见. 用智能指针便可以有效缓解这类问题,本文主要讲解参见的智能指针的用法.包括:std::auto_ptr.boost::scoped_ptr.boost::shared_p

  • C++中智能指针如何设计和使用

    智能指针(smart pointer)是存储指向动态分配(堆)对象指针的类,用于生存期控制,能够确保自动正确的销毁动态分配的对象,防止内存泄露.它的一种通用实现技术是使用引用计数(reference count).智能指针类将一个计数器与类指向的对象相关联,引用计数跟踪该类有多少个对象共享同一指针.每次创建类的新对象时,初始化指针并将引用计数置为1:当对象作为另一对象的副本而创建时,拷贝构造函数拷贝指针并增加与之相应的引用计数:对一个对象进行赋值时,赋值操作符减少左操作数所指对象的引用计数(如果

随机推荐