举例讲解Python中的死锁、可重入锁和互斥锁

一、死锁

简单来说,死锁是一个资源被多次调用,而多次调用方都未能释放该资源就会造成死锁,这里结合例子说明下两种常见的死锁情况。

1、迭代死锁

该情况是一个线程“迭代”请求同一个资源,直接就会造成死锁:

import threading
import time
class MyThread(threading.Thread):
  def run(self):
    global num
    time.sleep(1)
    if mutex.acquire(1):
      num = num+1
      msg = self.name+' set num to '+str(num)
      print msg
      mutex.acquire()
      mutex.release()
      mutex.release()
num = 0
mutex = threading.Lock()
def test():
  for i in range(5):
    t = MyThread()
    t.start()
if __name__ == '__main__':
  test()

上例中,在run函数的if判断中第一次请求资源,请求后还未 release ,再次acquire,最终无法释放,造成死锁。这里例子中通过将print下面的两行注释掉就可以正常执行了 ,除此之外也可以通过可重入锁解决,后面会提到。

2、互相调用死锁

上例中的死锁是在同一个def函数内多次调用造成的,另一种情况是两个函数中都会调用相同的资源,互相等待对方结束的情况。如果两个线程分别占有一部分资源并且同时等待对方的资源,就会造成死锁。

import threading
import time
class MyThread(threading.Thread):
  def do1(self):
    global resA, resB
    if mutexA.acquire():
       msg = self.name+' got resA'
       print msg
       if mutexB.acquire(1):
         msg = self.name+' got resB'
         print msg
         mutexB.release()
       mutexA.release()
  def do2(self):
    global resA, resB
    if mutexB.acquire():
       msg = self.name+' got resB'
       print msg
       if mutexA.acquire(1):
         msg = self.name+' got resA'
         print msg
         mutexA.release()
       mutexB.release()
  def run(self):
    self.do1()
    self.do2()
resA = 0
resB = 0
mutexA = threading.Lock()
mutexB = threading.Lock()
def test():
  for i in range(5):
    t = MyThread()
    t.start()
if __name__ == '__main__':
  test()

这个死锁的示例稍微有点复杂。具体可以理下。

二、可重入锁

为了支持在同一线程中多次请求同一资源,python提供了“可重入锁”:threading.RLock。RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。这里以例1为例,如果使用RLock代替Lock,则不会发生死锁:

import threading
import time
class MyThread(threading.Thread):
  def run(self):
    global num
    time.sleep(1)
    if mutex.acquire(1):
      num = num+1
      msg = self.name+' set num to '+str(num)
      print msg
      mutex.acquire()
      mutex.release()
      mutex.release()
num = 0
mutex = threading.RLock()
def test():
  for i in range(5):
    t = MyThread()
    t.start()
if __name__ == '__main__':
  test()

和上面那个例子的不同之处在于threading.Lock()换成了threading.RLock() 。

三、互斥锁
python threading模块有两类锁:互斥锁(threading.Lock )和可重用锁(threading.RLock)。两者的用法基本相同,具体如下:

lock = threading.Lock()
lock.acquire()
dosomething……
lock.release()

RLock的用法是将threading.Lock()修改为threading.RLock()。便于理解,先来段代码:

[root@361way lock]# cat lock1.py
#!/usr/bin/env python
# coding=utf-8
import threading              # 导入threading模块
import time               # 导入time模块
class mythread(threading.Thread):    # 通过继承创建类
  def __init__(self,threadname):   # 初始化方法
    # 调用父类的初始化方法
    threading.Thread.__init__(self,name = threadname)
  def run(self):             # 重载run方法
    global x         # 使用global表明x为全局变量
    for i in range(3):
      x = x + 1
    time.sleep(5)     # 调用sleep函数,让线程休眠5秒
    print x
tl = []               # 定义列表
for i in range(10):
  t = mythread(str(i))        # 类实例化
  tl.append(t)           # 将类对象添加到列表中
x=0                 # 将x赋值为0
for i in tl:
  i.start()

这里执行的结果和想想的不同,结果如下:

[root@361way lock]# python lock1.py
30
30
30
30
30
30
30
30
30
30

为什么结果都是30呢?关键在于global 行和 time.sleep行。

1、由于x是一个全局变量,所以每次循环后 x 的值都是执行后的结果值;

2、由于该代码是多线程的操作,所以在sleep 等待的时候,之前已经执行完成的线程会在这等待,而后续的进程在等待的5秒这段时间也执行完成 ,等待print。同样由于global 的原理,x被重新斌值。所以打印出的结果全是30 ;

3、便于理解,可以尝试将sleep等注释,你再看下结果,就会发现有不同。

在实际应用中,如抓取程序等,也会出现类似于sleep等待的情况。在前后调用有顺序或打印有输出的时候,就会现并发竞争,造成结果或输出紊乱。这里就引入了锁的概念,上面的代码修改下,如下:

[root@361way lock]# cat lock2.py
#!/usr/bin/env python
# coding=utf-8
import threading              # 导入threading模块
import time               # 导入time模块
class mythread(threading.Thread):          # 通过继承创建类
  def __init__(self,threadname):         # 初始化方法
    threading.Thread.__init__(self,name = threadname)
  def run(self):             # 重载run方法
    global x            # 使用global表明x为全局变量
    lock.acquire()           # 调用lock的acquire方法
    for i in range(3):
      x = x + 1
    time.sleep(5)      # 调用sleep函数,让线程休眠5秒
    print x
    lock.release()        # 调用lock的release方法
lock = threading.Lock()        # 类实例化
tl = []             # 定义列表
for i in range(10):
  t = mythread(str(i))      # 类实例化
  tl.append(t)       # 将类对象添加到列表中
x=0            # 将x赋值为0
for i in tl:
  i.start()           # 依次运行线程

执行的结果如下:

[root@361way lock]# python lock2.py
3
6
9
12
15
18
21
24
27
30

加锁的结果会造成阻塞,而且会造成开锁大。会根据顺序由并发的多线程按顺序输出,如果后面的线程执行过快,需要等待前面的进程结束后其才能结束 --- 写的貌似有点像队列的概念了 ,不过在加锁的很多场景下确实可以通过队列去解决。

(0)

相关推荐

  • python基于windows平台锁定键盘输入的方法

    本文实例讲述了python基于windows平台锁定键盘输入的方法.分享给大家供大家参考.具体分析如下: pywin32中没有BlockInput这个函数.VC++中有,发现这个方法就可以了. 该代码可阻断windows平台下的鼠标键盘输入,如下所示: # coding: UTF-8 import time from ctypes import * user32 = windll.LoadLibrary('user32.dll') user32.BlockInput(True); time.sl

  • 举例讲解Python编程中对线程锁的使用

    锁 python的内置数据结构比如列表和字典等是线程安全的,但是简单数据类型比如整数和浮点数则不是线程安全的,要这些简单数据类型的通过操作,就需要使用锁. #!/usr/bin/env python3 # coding=utf-8 import threading shared_resource_with_lock = 0 shared_resource_with_no_lock = 0 COUNT = 100000 shared_resource_lock = threading.Lock()

  • python避免死锁方法实例分析

    本文实例讲述了python避免死锁方法.分享给大家供大家参考.具体分析如下: 当两个或者更多的线程在等待资源的时候就会产生死锁,两个线程相互等待. 在本文实例中 thread1 等待thread2释放block , thread2等待thtead1释放ablock,   避免死锁的原则: 1. 一定要以一个固定的顺序来取得锁,这个列子中,意味着首先要取得alock, 然后再去block 2. 一定要按照与取得锁相反的顺序释放锁,这里,应该先释放block,然后是alock import thre

  • Python简单进程锁代码实例

    先说说线程 在多线程中,为了保证共享资源的正确性,我们常常会用到线程同步技术. 将一些敏感操作变成原子操作,保证同一时刻多个线程中只有一个线程在执行这个原子操作. 我最常用的是互斥锁,也称独占锁.其次还有读写锁,信号量,条件变量等. 除此之外,我们在进程间通信时会用到信号,向某一个进程发送信号,该进程中设置信号处理函数,然后当该进程收到信号时,执行某些操作. 其实在线程中,也可以接受信号,利用这种机制,我们也可以用来实现线程同步.更多信息见 http://www.jb51.net/article

  • Python中多线程及程序锁浅析

    Python中多线程使用到Threading模块.Threading模块中用到的主要的类是Thread,我们先来写一个简单的多线程代码: 复制代码 代码如下: # coding : uft-8 __author__ = 'Phtih0n' import threading class MyThread(threading.Thread):     def __init__(self):         threading.Thread.__init__(self) def run(self):

  • 简要讲解Python编程中线程的创建与锁的使用

    创建线程 创建线程的两种方法: 1,直接调用threading.Thread来构造thread对象,Thread的参数如下: class threading.Thread(group=None, target=None, name=None, args=(), kwargs={})  group为None: target为线程将要执行的功能函数: name为线程的名字,也可以在对象构造后调用setName()来设定: args为tuple类型的参数,可以为多个,如果只有一个也的使用tuple的形

  • python线程锁(thread)学习示例

    复制代码 代码如下: # encoding: UTF-8import threadimport time # 一个用于在线程中执行的函数def func():    for i in range(5):        print 'func'        time.sleep(1) # 结束当前线程    # 这个方法与thread.exit_thread()等价    thread.exit() # 当func返回时,线程同样会结束 # 启动一个线程,线程立即开始运行# 这个方法与threa

  • python调用windows api锁定计算机示例

    调用Windows API锁定计算机 本来想用Python32直接调用,可是没有发现Python32有Windows API LockWorkStation(); 因此,就直接调用Windows DLL了 复制代码 代码如下: #!/usr/bin/env python#-*- coding:cp936 -*- "调用WindowAPI锁定计算机" import ctypes; dll = ctypes.WinDLL('user32.dll'); dll.LockWorkStation

  • python基于mysql实现的简单队列以及跨进程锁实例详解

    通常在我们进行多进程应用开发的过程中,不可避免的会遇到多个进程访问同一个资源(临界资源)的状况,这时候必须通过加一个全局性的锁,来实现资源的同步访问(即:同一时间里只能有一个进程访问资源). 举个例子如下: 假设我们用mysql来实现一个任务队列,实现的过程如下: 1. 在Mysql中创建Job表,用于储存队列任务,如下: create table jobs( id auto_increment not null primary key, message text not null, job_s

  • python多线程threading.Lock锁用法实例

    本文实例讲述了python多线程threading.Lock锁的用法实例,分享给大家供大家参考.具体分析如下: python的锁可以独立提取出来 复制代码 代码如下: mutex = threading.Lock() #锁的使用 #创建锁 mutex = threading.Lock() #锁定 mutex.acquire([timeout]) #释放 mutex.release() 锁定方法acquire可以有一个超时时间的可选参数timeout.如果设定了timeout,则在超时后通过返回值

  • python版本的读写锁操作方法

    本文实例讲述了python版本的读写锁操作方法.分享给大家供大家参考,具体如下: 最近要用到读写锁的机制,但是python2.7的自带库里居然木有. 网上讲读写锁的例子众多,但是原理简单,代码明晰的却不多见, 索性自己写个. 读写锁一般用于多个读者,1个或多个写者同时访问某种资源的时候.多个读者之间是可以共享资源的,但是写者与读者之间,写者与写者之间是资源互斥的. 这也就是说同时可以有多个读者或一个写者处于工作状态. 细分下来,读写锁可以分为三类,读者优先,写者优先和公开策略. 第一种,读者优先

  • Python中死锁的形成示例及死锁情况的防止

    死锁示例 搞多线程的经常会遇到死锁的问题,学习操作系统的时候会讲到死锁相关的东西,我们用Python直观的演示一下. 死锁的一个原因是互斥锁.假设银行系统中,用户a试图转账100块给用户b,与此同时用户b试图转账200块给用户a,则可能产生死锁. 2个线程互相等待对方的锁,互相占用着资源不释放. #coding=utf-8 import time import threading class Account: def __init__(self, _id, balance, lock): sel

随机推荐