Python函数参数匹配模型通用规则keyword-only参数详解

Python3对函数参数的排序规则更加通用化了,即Python3 keyword-only参数,该参数即为必须只按照关键字传递而不会有一个位置参数来填充的参数。该规则在处理人一多个参数是很有用的。

keyword-only

kword_only(1, 2, 3, c=4)
print('-' * 20)
kword_only(a=1, c=3)

示例结果:

1 (2, 3) 4
--------------------
1 () 3

在 *args 之后的参数都需要在调用中使用关键字的方式传递,否则会抛出异常。

def kword_only(a, *b, c):
  print(a, b, c)
kword_only(1, 2, 3)

异常结果:

kword_only(1, 2, 3)
TypeError: kword_only() missing 1 required keyword-only argument: 'c'

我们也可以在参数列表中使用一个 * 字符,表示函数不会接受变量长度的参数列表,而是要求 * 后面的参数都需要使用关键字参数的方式传递。

def kword_only(a, *, b, c):
  print(a, b, c)
kword_only(1, b=2, c=3)
print('-'*20)
kword_only(b=2, c=3, a=1)

示例结果:

1 2 3
--------------------
1 2 3

我们可以看到 a 可以利用位置参数进行传递,但是 b 、 c 必须通过关键字参数传递,否则就会抛出异常。

def kword_only(a, *, b, c):
  print(a, b, c)
kword_only(1, 2, 3)

异常结果:

kword_only(1, 2, 3)
TypeError: kword_only() takes 1 positional argument but 3 were given

当然我们,可以通过对keyword-only参数使用默认值,这样例中的 a 仍可以通过位置参数或者关键字参数传递,而 b 、 c 就是可选的了,当然如果需要传递的话仍然是要利用关键字参数进行传递的。

def kword_only(a, *, b=2, c=3):
  print(a, b, c)
kword_only(1)
print('-'*20)
kword_only(a=1)
print('-'*20)
kword_only(b=22, c=33, a=11)

示例结果:

1 2 3
--------------------
1 2 3
--------------------
11 22 33

总结

以上所述是小编给大家介绍的Python函数参数匹配模型通用规则keyword-only参数详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • Python实现接受任意个数参数的函数方法

    这个功能倒也不是我多么急需的功能,只是恰好看到了,觉得或许以后会用的到.功能就是实现函数能够接受不同数目的参数. 其实,在C语言中这个功能是熟悉的,虽说实现的形式不太一样.C语言中的main函数是可以实现类似的功能的,可以通过这种方式实现一个支持命令行参数的程序. 先写一段python实现相应功能的示范代码: defFuncDemo(*par): print("number of pars: %d" %len(par)) print("type of par: %s"

  • 详解Python函数可变参数定义及其参数传递方式

    Python函数可变参数定义及其参数传递方式详解 python中 函数不定参数的定义形式如下 1. func(*args)  传入的参数为以元组形式存在args中,如: def func(*args): print args >>> func(1,2,3) (1, 2, 3) >>> func(*[1,2,3]) #这个方式可以直接将一个列表的所有元素当作不定参数 传入(1, 2, 3) 2.func( **kwargs) 传入的参数为以字典形式存在args中,如: d

  • 深入理解python中函数传递参数是值传递还是引用传递

    目前网络上大部分博客的结论都是这样的: Python不允许程序员选择采用传值还是传 引用.Python参数传递采用的肯定是"传对象引用"的方式.实际上,这种方式相当于传值和传引用的一种综合.如果函数收到的是一个可变对象(比如字典 或者列表)的引用,就能修改对象的原始值--相当于通过"传引用"来传递对象.如果函数收到的是一个不可变对象(比如数字.字符或者元组)的引用,就不能 直接修改原始对象--相当于通过"传值"来传递对象. 你可以在很多讨论该问题

  • Python中scatter函数参数及用法详解

    最近开始学习Python编程,遇到scatter函数,感觉里面的参数不知道什么意思于是查资料,最后总结如下: 1.scatter函数原型 2.其中散点的形状参数marker如下: 3.其中颜色参数c如下: 4.基本的使用方法如下: #导入必要的模块 import numpy as np import matplotlib.pyplot as plt #产生测试数据 x = np.arange(1,10) y = x fig = plt.figure() ax1 = fig.add_subplot

  • Python自定义函数定义,参数,调用代码解析

    函数能提高应用的模块性,和代码的重复利用率.Python提供了许多内建函数,比如print()等.也可以创建用户自定义函数. 函数定义 函数定义的简单规则: 函数代码块以def关键词开头,后接函数标识符名称和圆括号(),任何传入参数和自变量必须放在圆括号中间 函数内容以冒号起始,并且缩进 若有返回值,Return[expression]结束函数:不带return表达式相当于返回None 函数通常使用三个单引号'''...'''来注释说明函数:函数体内容不可为空,可用pass来表示空语句:以下几个

  • Python函数参数匹配模型通用规则keyword-only参数详解

    Python3对函数参数的排序规则更加通用化了,即Python3 keyword-only参数,该参数即为必须只按照关键字传递而不会有一个位置参数来填充的参数.该规则在处理人一多个参数是很有用的. keyword-only kword_only(1, 2, 3, c=4) print('-' * 20) kword_only(a=1, c=3) 示例结果: 1 (2, 3) 4 -------------------- 1 () 3 在 *args 之后的参数都需要在调用中使用关键字的方式传递,

  • Python中函数参数匹配模型详解

    当我们的函数接收参数为任意个,或者不能确定参数个数时,我们,可以利用 * 来定义任意数目的参数,这个函数调用时,其所有不匹配的位置参数会被赋值为元组,我们可以在函数利用循环或索引进行使用 def f(*args): # 直接打印元组参数 print(args) print('-'*20) # 循环打印元组参数 [print(i) for i in args] ... # 传递一个参数 f(1) print('='*20) # 传递5个参数 f(1, 2, 3, 4, 5) 示例结果: (1,)

  • python机器学习朴素贝叶斯算法及模型的选择和调优详解

    目录 一.概率知识基础 1.概率 2.联合概率 3.条件概率 二.朴素贝叶斯 1.朴素贝叶斯计算方式 2.拉普拉斯平滑 3.朴素贝叶斯API 三.朴素贝叶斯算法案例 1.案例概述 2.数据获取 3.数据处理 4.算法流程 5.注意事项 四.分类模型的评估 1.混淆矩阵 2.评估模型API 3.模型选择与调优 ①交叉验证 ②网格搜索 五.以knn为例的模型调优使用方法 1.对超参数进行构造 2.进行网格搜索 3.结果查看 一.概率知识基础 1.概率 概率就是某件事情发生的可能性. 2.联合概率 包

  • 对python 匹配字符串开头和结尾的方法详解

    1.你需要通过指定的文本模式去检查字符串的开头或者结尾,比如文件名后缀,URL Scheme 等等.检 查 字 符 串 开 头 或 结 尾 的 一 个 简 单 方 法 是 使 用str.startswith() 或 者 是str.endswith()方法.比如: >>> filename = 'spam.txt' >>> filename.endswith('.txt') True >>> filename.startswith('file:') Fa

  • Python机器学习应用之基于BP神经网络的预测篇详解

    目录 一.Introduction 1 BP神经网络的优点 2 BP神经网络的缺点 二.实现过程 1 Demo 2 基于BP神经网络的乳腺癌分类预测 三.Keys 一.Introduction 1 BP神经网络的优点 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数.这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力. 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输

  • python类:class创建、数据方法属性及访问控制详解

    在Python中,可以通过class关键字定义自己的类,然后通过自定义的类对象类创建实例对象. python中创建类 创建一个Student的类,并且实现了这个类的初始化函数"__init__": class Student(object):     count = 0     books = []     def __init__(self, name):         self.name = name 接下来就通过上面的Student类来看看Python中类的相关内容. 类构造和

  • 基于Python的接口自动化unittest测试框架和ddt数据驱动详解

    引言 在编写接口自动化用例时,我们一般针对一个接口建立一个.py文件,一条接口测试用例封装为一个函数(方法),但是在批量执行的过程中,如果其中一条出错,后面的用例就无法执行,还有在运行大量的接口测试用例时测试数据如何管理和加载.针对测试用例加载以及执行控制,python语言提供了unittest单元测试框架,将测试用例编写在unittest框架下,使用该框架可以单个或者批量加载互不影响的用例执行及更灵活的执行控制,对于更好的进行测试数据的管理和加载,这里我们引入数据驱动的模块:ddt,测试数据和

  • 使用Python下载抖音各大V视频的思路详解

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理. 以下文章来源于Python七号 ,作者 somenzz Python爬虫.数据分析.网站开发等案例教程视频免费在线观看 https://space.bilibili.com/523606542 上次写了用 Python 批量下载知乎视频的方式,这次分享用 Python 批量下载抖音个人主页的全部无水印视频,本文重点不是提供一个好用的脚本,而是讲述如何写出这样的脚本,正所谓授人以鱼,不如授人

  • Kotlin常用函数let,with,run,apply用法与区别案例详解

    在kotlin编程中let.with.run.apply这些函数使用率是非常高的,有时候可以通用,差别很小,但如果能记住他们的不同点,可以更加合理的选择使用. 在这之前首先要了解一下Lambda表达式的一些规则,这会帮助你理解使用这些函数的时候有没有( )可不可以用it代替参数等.因为这些函数的最后一个参数都是lambda. 如何理解lambda呢?可以把lambda理解为就是一个对象,但这个对象比较特殊,它是一段代码,既然是对象就可以作为函数的参数使用.这种对象称为函数对象. lambda表达

  • PyTorch深度学习模型的保存和加载流程详解

    一.模型参数的保存和加载 torch.save(module.state_dict(), path):使用module.state_dict()函数获取各层已经训练好的参数和缓冲区,然后将参数和缓冲区保存到path所指定的文件存放路径(常用文件格式为.pt..pth或.pkl). torch.nn.Module.load_state_dict(state_dict):从state_dict中加载参数和缓冲区到Module及其子类中 . torch.nn.Module.state_dict()函数

随机推荐