Python实现Kmeans聚类算法

本节内容:本节内容是根据上学期所上的模式识别课程的作业整理而来,第一道题目是Kmeans聚类算法,数据集是Iris(鸢尾花的数据集),分类数k是3,数据维数是4。

关于聚类

聚类算法是这样的一种算法:给定样本数据Sample,要求将样本Sample中相似的数据聚到一类。有了这个认识之后,就应该了解了聚类算法要干什么了吧。说白了,就是归类。
    首先,我们需要考虑的是,如何衡量数据之间的相似程度?比如说,有一群说不同语言的人,我们一般是根据他们的方言来聚类的(当然,你也可以指定以身高来聚类)。这里,语言的相似性(或者身高)就成了我们衡量相似的量度了。在考虑存在海量数据,如微博上各种用户的关系网,如何根据用户的关注和被关注来聚类,给用户推荐他们感兴趣的用户?这就是聚类算法研究的内容之一了。
    Kmeans就是这样的聚类算法中比较简单的算法,给定数据样本集Sample和应该划分的类数K,对样本数据Sample进行聚类,最终形成K个cluster,其相似的度量是某条数据i与中心点的”距离”(这里所说的距离,不止于二维)。

基本思想

KMeans算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。

基本步骤

K-Means聚类算法主要分为三个步骤:
1,初始化k个聚类中心。
2,计算出每个对象跟这k个中心的距离(相似度计算,这个下面会提到),假如x这个对象跟y这个中心的距离最小(相似度最大),那么x属于y这个中心。这一步就可以得到初步的k个聚类 。
3,在第二步得到的每个聚类分别计算出新的聚类中心,和旧的中心比对,假如不相同,则继续第2步,直到新旧两个中心相同,说明聚类不可变,已经成功 。

复杂度分析

时间复杂度:O(tKmn),其中,t为迭代次数,K为簇的数目,m为记录数,n为维数
空间复杂度:O((m+K)n),其中,K为簇的数目,m为记录数,n为维数

初始质心的选择

选择适当的初始质心是基本kmeans算法的关键步骤。常见的方法是随机的选取初始质心,但是这样簇的质量常常很差。处理选取初始质心问题的一种常用技术是:多次运行,每次使用一组不同的随机初始质心,然后选取具有最小SSE(误差的平方和)的簇集。这种策略简单,但是效果可能不好,这取决于数据集和寻找的簇的个数。
     第二种有效的方法是,取一个样本,并使用层次聚类技术对它聚类。从层次聚类中提取K个簇,并用这些簇的质心作为初始质心。该方法通常很有效,但仅对下列情况有效:
        (1)样本相对较小,例如数百到数千(层次聚类开销较大);
        (2)K相对于样本大小较小

第三种选择初始质心的方法,随机地选择第一个点,或取所有点的质心作为第一个点。然后,对于每个后继初始质心,选择离已经选取过的初始质心最远的点。使用这种方法,确保了选择的初始质心不仅是随机的,而且是散开的。但是,这种方法可能选中离群点。此外,求离当前初始质心集最远的点开销也非常大。为了克服这个问题,通常该方法用于点样本。由于离群点很少(多了就不是离群点了),它们多半不会在随机样本中出现。计算量也大幅减少。
    第四种方法是使用canopy算法进行初始划分。基于Canopy Method的聚类算法将聚类过程分为两个阶段:
   Stage1:聚类最耗费计算的地方是计算对象相似性的时候,Canopy Method在第一阶段选择简单、计算代价较低的方法计算对象相似性,将相似的对象放在一个子集中,这个子集被叫做Canopy ,通过一系列计算得到若干Canopy,Canopy之间可以是重叠的,但不会存在某个对象不属于任何Canopy的情况,可以把这一阶段看做数据预处理。
  Stage2:在各个Canopy 内使用传统的聚类方法(如K-means),不属于同一Canopy 的对象之间不进行相似性计算。从这个方法起码可以看出两点好处:首先,Canopy 不要太大且Canopy 之间重叠的不要太多的话会大大减少后续需要计算相似性的对象的个数;其次,类似于K-means这样的聚类方法是需要人为指出K的值的,通过Stage1得到的Canopy 个数完全可以作为这个K值,一定程度上减少了选择K的盲目性。

算法实验

任务

在给定的Iris.txt样本文件中,用K-means聚类算法将150个4维样本数据分成3类

数据集(Iris.txt)

5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2
5.4 3.9 1.7 0.4
4.6 3.4 1.4 0.3
5.0 3.4 1.5 0.2
4.4 2.9 1.4 0.2
4.9 3.1 1.5 0.1
5.4 3.7 1.5 0.2
4.8 3.4 1.6 0.2
4.8 3.0 1.4 0.1
4.3 3.0 1.1 0.1
5.8 4.0 1.2 0.2
5.7 4.4 1.5 0.4
5.4 3.9 1.3 0.4
5.1 3.5 1.4 0.3
5.7 3.8 1.7 0.3
5.1 3.8 1.5 0.3
5.4 3.4 1.7 0.2
5.1 3.7 1.5 0.4
4.6 3.6 1.0 0.2
5.1 3.3 1.7 0.5
4.8 3.4 1.9 0.2
5.0 3.0 1.6 0.2
5.0 3.4 1.6 0.4
5.2 3.5 1.5 0.2
5.2 3.4 1.4 0.2
4.7 3.2 1.6 0.2
4.8 3.1 1.6 0.2
5.4 3.4 1.5 0.4
5.2 4.1 1.5 0.1
5.5 4.2 1.4 0.2
4.9 3.1 1.5 0.2
5.0 3.2 1.2 0.2
5.5 3.5 1.3 0.2
4.9 3.6 1.4 0.1
4.4 3.0 1.3 0.2
5.1 3.4 1.5 0.2
5.0 3.5 1.3 0.3
4.5 2.3 1.3 0.3
4.4 3.2 1.3 0.2
5.0 3.5 1.6 0.6
5.1 3.8 1.9 0.4
4.8 3.0 1.4 0.3
5.1 3.8 1.6 0.2
4.6 3.2 1.4 0.2
5.3 3.7 1.5 0.2
5.0 3.3 1.4 0.2
7.0 3.2 4.7 1.4
6.4 3.2 4.5 1.5
6.9 3.1 4.9 1.5
5.5 2.3 4.0 1.3
6.5 2.8 4.6 1.5
5.7 2.8 4.5 1.3
6.3 3.3 4.7 1.6
4.9 2.4 3.3 1.0
6.6 2.9 4.6 1.3
5.2 2.7 3.9 1.4
5.0 2.0 3.5 1.0
5.9 3.0 4.2 1.5
6.0 2.2 4.0 1.0
6.1 2.9 4.7 1.4
5.6 2.9 3.9 1.3
6.7 3.1 4.4 1.4
5.6 3.0 4.5 1.5
5.8 2.7 4.1 1.0
6.2 2.2 4.5 1.5
5.6 2.5 3.9 1.1
5.9 3.2 4.8 1.8
6.1 2.8 4.0 1.3
6.3 2.5 4.9 1.5
6.1 2.8 4.7 1.2
6.4 2.9 4.3 1.3
6.6 3.0 4.4 1.4
6.8 2.8 4.8 1.4
6.7 3.0 5.0 1.7
6.0 2.9 4.5 1.5
5.7 2.6 3.5 1.0
5.5 2.4 3.8 1.1
5.5 2.4 3.7 1.0
5.8 2.7 3.9 1.2
6.0 2.7 5.1 1.6
5.4 3.0 4.5 1.5
6.0 3.4 4.5 1.6
6.7 3.1 4.7 1.5
6.3 2.3 4.4 1.3
5.6 3.0 4.1 1.3
5.5 2.5 5.0 1.3
5.5 2.6 4.4 1.2
6.1 3.0 4.6 1.4
5.8 2.6 4.0 1.2
5.0 2.3 3.3 1.0
5.6 2.7 4.2 1.3
5.7 3.0 4.2 1.2
5.7 2.9 4.2 1.3
6.2 2.9 4.3 1.3
5.1 2.5 3.0 1.1
5.7 2.8 4.1 1.3
6.3 3.3 6.0 2.5
5.8 2.7 5.1 1.9
7.1 3.0 5.9 2.1
6.3 2.9 5.6 1.8
6.5 3.0 5.8 2.2
7.6 3.0 6.6 2.1
4.9 2.5 4.5 1.7
7.3 2.9 6.3 1.8
6.7 2.5 5.8 1.8
7.2 3.6 6.1 2.5
6.5 3.2 5.1 2.0
6.4 2.7 5.3 1.9
6.8 3.0 5.5 2.1
5.7 2.5 5.0 2.0
5.8 2.8 5.1 2.4
6.4 3.2 5.3 2.3
6.5 3.0 5.5 1.8
7.7 3.8 6.7 2.2
7.7 2.6 6.9 2.3
6.0 2.2 5.0 1.5
6.9 3.2 5.7 2.3
5.6 2.8 4.9 2.0
7.7 2.8 6.7 2.0
6.3 2.7 4.9 1.8
6.7 3.3 5.7 2.1
7.2 3.2 6.0 1.8
6.2 2.8 4.8 1.8
6.1 3.0 4.9 1.8
6.4 2.8 5.6 2.1
7.2 3.0 5.8 1.6
7.4 2.8 6.1 1.9
7.9 3.8 6.4 2.0
6.4 2.8 5.6 2.2
6.3 2.8 5.1 1.5
6.1 2.6 5.6 1.4
7.7 3.0 6.1 2.3
6.3 3.4 5.6 2.4
6.4 3.1 5.5 1.8
6.0 3.0 4.8 1.8
6.9 3.1 5.4 2.1
6.7 3.1 5.6 2.4
6.9 3.1 5.1 2.3
5.8 2.7 5.1 1.9
6.8 3.2 5.9 2.3
6.7 3.3 5.7 2.5
6.7 3.0 5.2 2.3
6.3 2.5 5.0 1.9
6.5 3.0 5.2 2.0
6.2 3.4 5.4 2.3
5.9 3.0 5.1 1.8

Python实现

算法流程

第一步,将文件中的数据读入到dataset列表中,通过len(dataset[0])来获取数据维数,在测试样例中是四维
第二步,产生聚类的初始位置。首先扫描数据,获取每一维数据分量中的最大值和最小值,然后在这个区间上随机产生一个值,循环k次(k为所分的类别),这样就产生了聚类初始中心(k个)
第三步,按照最短距离(欧式距离)原则将所有样本分配到k个聚类中心中的某一个,这步操作的结果是产生列表assigments,可以通过Python中的zip函数整合成字典。注意到原始聚类中心可能不在样本中,因此可能出现分配的结果出现某一个聚类中心点集合为空,此时需要结束,提示“随机数产生错误,需要重新运行”,以产生合适的初始中心。
第四步,计算各个聚类中心的新向量,更新距离,即每一类中每一维均值向量。然后再进行分配,比较前后两个聚类中心向量是否相等,若不相等则进行循环,否则终止循环,进入下一步。
最后,将结果输出到文件和屏幕中

代码如下

# coding=gbk
#python edition: Python3.4.1,2014,9,24
from collections import defaultdict
from random import uniform
from math import sqrt

def read_points():
  dataset=[]
  with open('Iris.txt','r') as file:
    for line in file:
      if line =='\n':
        continue
      dataset.append(list(map(float,line.split(' '))))
    file.close()
    return dataset

def write_results(listResult,dataset,k):
  with open('result.txt','a') as file:
    for kind in range(k):
       file.write( "CLASSINFO:%d\n"%(kind+1) )
       for j in listResult[kind]:
         file.write('%d\n'%j)
       file.write('\n')
    file.write('\n\n')
    file.close()

def point_avg(points):
  dimensions=len(points[0])
  new_center=[]
  for dimension in range(dimensions):
    sum=0
    for p in points:
      sum+=p[dimension]
    new_center.append(float("%.8f"%(sum/float(len(points)))))
  return new_center

def update_centers(data_set ,assignments,k):
  new_means = defaultdict(list)
  centers = []
  for assignment ,point in zip(assignments , data_set):
    new_means[assignment].append(point)
  for i in range(k):
    points=new_means[i]
    centers.append(point_avg(points))
  return centers

def assign_points(data_points,centers):
  assignments=[]
  for point in data_points:
    shortest=float('inf')
    shortest_index = 0
    for i in range(len(centers)):
      value=distance(point,centers[i])
      if value<shortest:
        shortest=value
        shortest_index=i
    assignments.append(shortest_index)
  if len(set(assignments))<len(centers) :
      print("\n--!!!产生随机数错误,请重新运行程序!!!!--\n")
      exit()
  return assignments

def distance(a,b):
  dimention=len(a)
  sum=0
  for i in range(dimention):
    sq=(a[i]-b[i])**2
    sum+=sq
  return sqrt(sum)

def generate_k(data_set,k):
  centers=[]
  dimentions=len(data_set[0])
  min_max=defaultdict(int)
  for point in data_set:
    for i in range(dimentions):
      value=point[i]
      min_key='min_%d'%i
      max_key='max_%d'%i
      if min_key not in min_max or value<min_max[min_key]:
        min_max[min_key]=value
      if max_key not in min_max or value>min_max[max_key]:
        min_max[max_key]=value
  for j in range(k):
    rand_point=[]
    for i in range(dimentions):
      min_val=min_max['min_%d'%i]
      max_val=min_max['max_%d'%i]
      tmp=float("%.8f"%(uniform(min_val,max_val)))
      rand_point.append(tmp)
    centers.append(rand_point)
  return centers

def k_means(dataset,k):
  k_points=generate_k(dataset,k)
  assignments=assign_points(dataset,k_points)
  old_assignments=None
  while assignments !=old_assignments:
    new_centers=update_centers(dataset,assignments,k)
    old_assignments=assignments
    assignments=assign_points(dataset,new_centers)
  result=list(zip(assignments,dataset))
  print('\n\n---------------------------------分类结果---------------------------------------\n\n')
  for out in result :
    print(out,end='\n')
  print('\n\n---------------------------------标号简记---------------------------------------\n\n')
  listResult=[[] for i in range(k)]
  count=0
  for i in assignments:
    listResult[i].append(count)
    count=count+1
  write_results(listResult,dataset,k)
  for kind in range(k):
    print("第%d类数据有:"%(kind+1))
    count=0
    for j in listResult[kind]:
       print(j,end=' ')
       count=count+1
       if count%25==0:
         print('\n')
    print('\n')
  print('\n\n--------------------------------------------------------------------------------\n\n')

def main():
  dataset=read_points()
  k_means(dataset,3)

if __name__ == "__main__":
  main()

分类结果

a. 通过多次运行程序发现,所得结果与初始值的选定有着密切的关系,并且由于在我的程序中采用随机数的方式产生初值,因此经过观察发现有多种结果。
b. 其中两种常见的结果之一如下:
第1类数据有:(50)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
第2类数据有:(38)
52 77 100 102 103 104 105 107 108 109 110 111 112 115 116 117 118 120 122 124 125 128 129 130 131 132 134 135 136 137 139 140 141 143 144 145 147 148
第3类数据有:(62)
50 51 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 101 106
113 114 119 121 123 126 127 133 138 142 146 149
c. 结果之二:
第1类数据有:(50)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
第2类数据有:(61)
51 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 101 106 113
114 119 121 123 126 127 133 138 142 146 149
第3类数据有:(39)
50 52 77 100 102 103 104 105 107 108 109 110 111 112 115 116 117 118 120 122 124 125 128 129 130 131 132 134 135 136 137 139 140 141 143 144 145 147 148

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • python实现聚类算法原理
  • K-means聚类算法介绍与利用python实现的代码示例
  • python中实现k-means聚类算法详解
  • Python聚类算法之DBSACN实例分析
  • Python聚类算法之凝聚层次聚类实例分析
  • Python聚类算法之基本K均值实例详解
  • python实现k均值算法示例(k均值聚类算法)
  • python实现kMeans算法
  • Python实现的Kmeans++算法实例
(0)

相关推荐

  • python实现k均值算法示例(k均值聚类算法)

    简单实现平面的点K均值分析,使用欧几里得距离,并用pylab展示. 复制代码 代码如下: import pylab as pl #calc Euclid squiredef calc_e_squire(a, b):    return (a[0]- b[0]) ** 2 + (a[1] - b[1]) **2 #init the 20 pointa = [2,4,3,6,7,8,2,3,5,6,12,10,15,16,11,10,19,17,16,13]b = [5,6,1,4,2,4,3,1,

  • python实现聚类算法原理

    本文主要内容: 聚类算法的特点 聚类算法样本间的属性(包括,有序属性.无序属性)度量标准 聚类的常见算法,原型聚类(主要论述K均值聚类),层次聚类.密度聚类 K均值聚类算法的python实现,以及聚类算法与EM最大算法的关系 参考引用 先上一张gif的k均值聚类算法动态图片,让大家对算法有个感性认识: 其中:N=200代表有200个样本,不同的颜色代表不同的簇(其中 3种颜色为3个簇),星星代表每个簇的簇心.算法通过25次迭代找到收敛的簇心,以及对应的簇. 每次迭代的过程中,簇心和对应的簇都在变

  • Python实现的Kmeans++算法实例

    1.从Kmeans说起 Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了.下面说一下如何在matlab中使用kmeans算法. 创建7个二维的数据点: 复制代码 代码如下: x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]]; 使用kmeans函数: 复制代码 代码如下: class = kmeans(x, 2); x是数据点,x的每一行代表一个数据:2指定要有2个中心点,也就是聚类结果要有2个簇. class将是一个具有7

  • python中实现k-means聚类算法详解

    算法优缺点: 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚

  • Python聚类算法之基本K均值实例详解

    本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所期望的簇的个数.每次循环中,每个点被指派到最近的质心,指派到同一个质心的点集构成一个.然后,根据指派到簇的点,更新每个簇的质心.重复指派和更新操作,直到质心不发生明显的变化. # scoding=utf-8 import pylab as pl points = [[int(eachpoint.split("#")[0]), in

  • Python聚类算法之凝聚层次聚类实例分析

    本文实例讲述了Python聚类算法之凝聚层次聚类.分享给大家供大家参考,具体如下: 凝聚层次聚类:所谓凝聚的,指的是该算法初始时,将每个点作为一个簇,每一步合并两个最接近的簇.另外即使到最后,对于噪音点或是离群点也往往还是各占一簇的,除非过度合并.对于这里的"最接近",有下面三种定义.我在实现是使用了MIN,该方法在合并时,只要依次取当前最近的点对,如果这个点对当前不在一个簇中,将所在的两个簇合并就行: 单链(MIN):定义簇的邻近度为不同两个簇的两个最近的点之间的距离. 全链(MAX

  • Python聚类算法之DBSACN实例分析

    本文实例讲述了Python聚类算法之DBSACN.分享给大家供大家参考,具体如下: DBSCAN:是一种简单的,基于密度的聚类算法.本次实现中,DBSCAN使用了基于中心的方法.在基于中心的方法中,每个数据点的密度通过对以该点为中心以边长为2*EPs的网格(邻域)内的其他数据点的个数来度量.根据数据点的密度分为三类点: 核心点:该点在邻域内的密度超过给定的阀值MinPs. 边界点:该点不是核心点,但是其邻域内包含至少一个核心点. 噪音点:不是核心点,也不是边界点. 有了以上对数据点的划分,聚合可

  • K-means聚类算法介绍与利用python实现的代码示例

    聚类 今天说K-means聚类算法,但是必须要先理解聚类和分类的区别,很多业务人员在日常分析时候不是很严谨,混为一谈,其实二者有本质的区别. 分类其实是从特定的数据中挖掘模式,作出判断的过程.比如Gmail邮箱里有垃圾邮件分类器,一开始的时候可能什么都不过滤,在日常使用过程中,我人工对于每一封邮件点选"垃圾"或"不是垃圾",过一段时间,Gmail就体现出一定的智能,能够自动过滤掉一些垃圾邮件了.这是因为在点选的过程中,其实是给每一条邮件打了一个"标签&qu

  • python实现kMeans算法

    聚类是一种无监督的学习,将相似的对象放到同一簇中,有点像是全自动分类,簇内的对象越相似,簇间的对象差别越大,则聚类效果越好. 1.k均值聚类算法 k均值聚类将数据分为k个簇,每个簇通过其质心,即簇中所有点的中心来描述.首先随机确定k个初始点作为质心,然后将数据集分配到距离最近的簇中.然后将每个簇的质心更新为所有数据集的平均值.然后再进行第二次划分数据集,直到聚类结果不再变化为止. 伪代码为 随机创建k个簇质心 当任意一个点的簇分配发生改变时:     对数据集中的每个数据点:         对

  • python实现k-means聚类算法

    k-means聚类算法 k-means是发现给定数据集的k个簇的算法,也就是将数据集聚合为k类的算法. 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类,我们一般取欧几里得距离 3)重新计算已经得到的各个类的质心 4)迭代步骤(2).(3)直至新的质心与原质心相等或迭代次数大于指定阈值,算法结束 算法实现 随机初始化k个质心,用dict保存质心的值以及被聚类到该簇中的所有data. def initCent(dataSe

  • Python用K-means聚类算法进行客户分群的实现

    一.背景 1.项目描述 你拥有一个超市(Supermarket Mall).通过会员卡,你用有一些关于你的客户的基本数据,如客户ID,年龄,性别,年收入和消费分数. 消费分数是根据客户行为和购买数据等定义的参数分配给客户的. 问题陈述:你拥有这个商场.想要了解怎么样的顾客可以很容易地聚集在一起(目标顾客),以便可以给营销团队以灵感并相应地计划策略. 2.数据描述 字段名 描述 CustomerID 客户编号 Gender 性别 Age 年龄 Annual Income (k$) 年收入,单位为千

  • Python实现K-means聚类算法并可视化生成动图步骤详解

    K-means算法介绍 简单来说,K-means算法是一种无监督算法,不需要事先对数据集打上标签,即ground-truth,也可以对数据集进行分类,并且可以指定类别数目 牧师-村民模型 K-means 有一个著名的解释:牧师-村民模型: 有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的村民,于是每个村民到离自己家最近的布道点去听课. 听课之后,大家觉得距离太远了,于是每个牧师统计了一下自己的课上所有的村民的地址,搬到了所有地址的中心地带,并且在海

  • Python实现Kmeans聚类算法

    本节内容:本节内容是根据上学期所上的模式识别课程的作业整理而来,第一道题目是Kmeans聚类算法,数据集是Iris(鸢尾花的数据集),分类数k是3,数据维数是4. 关于聚类 聚类算法是这样的一种算法:给定样本数据Sample,要求将样本Sample中相似的数据聚到一类.有了这个认识之后,就应该了解了聚类算法要干什么了吧.说白了,就是归类.     首先,我们需要考虑的是,如何衡量数据之间的相似程度?比如说,有一群说不同语言的人,我们一般是根据他们的方言来聚类的(当然,你也可以指定以身高来聚类).

  • python基于K-means聚类算法的图像分割

    1 K-means算法 实际上,无论是从算法思想,还是具体实现上,K-means算法是一种很简单的算法.它属于无监督分类,通过按照一定的方式度量样本之间的相似度,通过迭代更新聚类中心,当聚类中心不再移动或移动差值小于阈值时,则就样本分为不同的类别. 1.1 算法思路 随机选取聚类中心 根据当前聚类中心,利用选定的度量方式,分类所有样本点 计算当前每一类的样本点的均值,作为下一次迭代的聚类中心 计算下一次迭代的聚类中心与当前聚类中心的差距 如4中的差距小于给定迭代阈值时,迭代结束.反之,至2继续下

  • 利用Python如何实现K-means聚类算法

    目录 前言 算法原理 目标函数 算法流程 Python实现 总结 前言 K-Means 是一种非常简单的聚类算法(聚类算法都属于无监督学习).给定固定数量的聚类和输入数据集,该算法试图将数据划分为聚类,使得聚类内部具有较高的相似性,聚类与聚类之间具有较低的相似性. 算法原理 1. 初始化聚类中心,或者在输入数据范围内随机选择,或者使用一些现有的训练样本(推荐) 2. 直到收敛 将每个数据点分配到最近的聚类.点与聚类中心之间的距离是通过欧几里德距离测量得到的. 通过将聚类中心的当前估计值设置为属于

  • python中kmeans聚类实现代码

    k-means算法思想较简单,说的通俗易懂点就是物以类聚,花了一点时间在python中实现k-means算法,k-means算法有本身的缺点,比如说k初始位置的选择,针对这个有不少人提出k-means++算法进行改进:另外一种是要对k大小的选择也没有很完善的理论,针对这个比较经典的理论是轮廓系数,二分聚类的算法确定k的大小,在最后还写了二分聚类算法的实现,代码主要参考机器学习实战那本书: #encoding:utf-8 ''''' Created on 2015年9月21日 @author: Z

  • Python实现的KMeans聚类算法实例分析

    本文实例讲述了Python实现的KMeans聚类算法.分享给大家供大家参考,具体如下: 菜鸟一枚,编程初学者,最近想使用Python3实现几个简单的机器学习分析方法,记录一下自己的学习过程. 关于KMeans算法本身就不做介绍了,下面记录一下自己遇到的问题. 一 .关于初始聚类中心的选取 初始聚类中心的选择一般有: (1)随机选取 (2)随机选取样本中一个点作为中心点,在通过这个点选取距离其较大的点作为第二个中心点,以此类推. (3)使用层次聚类等算法更新出初始聚类中心 我一开始是使用numpy

随机推荐