浅谈Pandas Series 和 Numpy array中的相同点

相同点:

可以利用中括号获取元素 s[0]

可以的得到单个元素 或 一个元素切片 s[3,7]

可以遍历 for x in s

可以调用同样的函数获取最大最小值 s.mean()  s.max()

可以用向量运算 <1 + s>

和Numpy一样, Pandas Series 也是用C语言, 因此它比Python列表的运算更快

以上这篇浅谈Pandas Series 和 Numpy array中的相同点就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pandas中Series和DataFrame的索引实现

    正文 在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. 使用下标索引的时候下标总是从0开始的,而且索引值总是数字.而使用关键字进行索引,关键字是key里面的值,既可以是数字,也可以是字符串等. Series对象介绍: Series对象是由索引index和值values组成的,一个index对应一个value.其中index是pandas中的Inde

  • 浅谈Pandas:Series和DataFrame间的算术元素

    如下所示: import numpy as np import pandas as pd from pandas import Series,DataFrame 一.Series与Series s1 = Series([1,3,5,7],index=['a','b','c','d']) s2 = Series([2,4,6,8],index=['a','b','c','e']) 索引对齐项相加,不对齐项的值取NaN s1+s2 1 a 3.0 b 7.0 c 11.0 d NaN e NaN d

  • python学习教程之Numpy和Pandas的使用

    前言 本文主要给大家介绍了关于python中Numpy和Pandas使用的相关资料,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 它们是什么? NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. Pandas是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.Pandas提供了大量能使我们快速便捷地处理数据

  • 对numpy和pandas中数组的合并和拆分详解

    合并 numpy中 numpy中可以通过concatenate,指定参数axis=0 或者 axis=1,在纵轴和横轴上合并两个数组. import numpy as np import pandas as pd arr1=np.ones((3,5)) arr1 Out[5]: array([[ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.]]) arr2=np.random.randn(15).reshape(

  • 对pandas中两种数据类型Series和DataFrame的区别详解

    1. Series相当于数组numpy.array类似 s1=pd.Series([1,2,4,6,7,2]) s2=pd.Series([4,3,1,57,8],index=['a','b','c','d','e']) print s2 obj1=s2.values # print obj1 obj2=s2.index # print obj2 # print s2[s2>4] # print s2['b'] 1.Series 它是有索引,如果我们未指定索引,则是以数字自动生成. 下面是一些例

  • 浅谈Pandas Series 和 Numpy array中的相同点

    相同点: 可以利用中括号获取元素 s[0] 可以的得到单个元素 或 一个元素切片 s[3,7] 可以遍历 for x in s 可以调用同样的函数获取最大最小值 s.mean()  s.max() 可以用向量运算 <1 + s> 和Numpy一样, Pandas Series 也是用C语言, 因此它比Python列表的运算更快 以上这篇浅谈Pandas Series 和 Numpy array中的相同点就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 浅谈pandas中DataFrame关于显示值省略的解决方法

    python的pandas库是一个非常好的工具,里面的DataFrame更是常用且好用,最近是越用越觉得设计的漂亮,pandas的很多细节设计的都非常好,有待使用过程中发掘. 好了,发完感慨,说一下最近DataFrame遇到的一个细节: 在使用DataFrame中有时候会遇到表格中的value显示不完全,像下面这样: In: import pandas as pd longString = u'''真正的科学家应当是个幻想家:谁不是幻想家,谁就只能把自己称为实践家.人生的磨难是很多的, 所以我们

  • 浅谈Pandas中map, applymap and apply的区别

    1.apply() 当想让方程作用在一维的向量上时,可以使用apply来完成,如下所示 In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon']) In [117]: frame Out[117]: b d e Utah -0.029638 1.081563 1.280300 Ohio 0.647747 0.831136 -1.

  • 浅谈pandas中shift和diff函数关系

    通过?pandas.DataFrame.shift命令查看帮助文档 Signature: pandas.DataFrame.shift(self, periods=1, freq=None, axis=0) Docstring: Shift index by desired number of periods with an optional time freq 该函数主要的功能就是使数据框中的数据移动,若freq=None时,根据axis的设置,行索引数据保持不变,列索引数据可以在行上上下移动

  • 浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)

    pandas为我们提供了多种切片方法,而要是不太了解这些方法,就会经常容易混淆.下面举例对这些切片方法进行说明. 数据介绍 先随机生成一组数据: In [5]: rnd_1 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_2 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_3 = [random.randrange(1,20) for x in xrange(1

  • 浅谈pandas筛选出表中满足另一个表所有条件的数据方法

    今天记录一下pandas筛选出一个表中满足另一个表中所有条件的数据.例如: list1 结构:名字,ID,颜色,数量,类型. list1 = [['a',1,255,100,'03'],['a',2,481,50,'06'],['a',47,255,500,'03'],['b',3,1,50,'11']] list2结构:名字,类型,颜色. list2 = [['a','03',255],['a','06',481]] 如何在list1中找出所有与list2中匹配的元素?要得到下面的结果:lis

  • 浅谈pandas用groupby后对层级索引levels的处理方法

    层及索引levels,刚开始学习pandas的时候没有太多的操作关于groupby,仅仅是简单的count.sum.size等等,没有更深入的利用groupby后的数据进行处理.近来数据处理的时候有遇到这类问题花了一点时间,所以这里记录以及复习一下:(以下皆是个人实践后的理解) 我使用一个实例来讲解下面的问题:一张数据表中有三列(动物物种.物种品种.品种价格),选出每个物种从大到小品种的前两种,最后只需要品种和价格这两列. 以上这张表是我们后面需要处理的数据表 (物种 品种 价格) levels

  • 浅谈pandas.cut与pandas.qcut的使用方法及区别

    pandas.cut: pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False) 参数: 1. x,类array对象,且必须为一维,待切割的原形式 2. bins, 整数.序列尺度.或间隔索引.如果bins是一个整数,它定义了x宽度范围内的等宽面元数量,但是在这种情况下,x的范围在每个边上被延长1%,以保证包括x的最小值或最大值.如果bin是序列,它定义了允许非均匀

  • 浅谈pandas dataframe对除数是零的处理

    如下例 data2['营业成本率'] = data2['营业成本本年累计']/data2['营业收入本年累计']*100 但有营业收入本年累计为0的情况, 则营业成本率为inf,即无穷大,而需要在表中体现为零,用如下方法填充: data2['营业成本率'] = data2['营业成本本年累计']/data2['营业收入本年累计']*100 data2['营业成本率'].replace([np.inf, -np.inf, "", np.nan], 0, inplace=True) 当然,

随机推荐