浅析Python函数式编程

Functional Programming,函数式编程。Python对函数式编程提供部分支持。对于纯函数编程,对任一函数,只要输入是确定的,输出就是确定的,可称之为无副作用。

一、高阶函数

1、变量指向函数

我们知道函数的计算结果可以赋值给变量,例如x = abs(-5)。

同理,变量也可以指向函数,例如f = abs。

如果一个变量指向了一个函数,那我们直接调用abs(x)与执行f(x)返回的结果是完全相同。

2、函数名也是变量

我们也可以把函数名看成是一个变量,例如abs()函数。执行语句abs=-5,之后调用abs(-5)就会报错,因为此时abs这个变量已经不指向绝对值函数了,而是指向一个整数-5。

3、函数作为形参

既然变量可以指向函数,函数也可以充当变量,那么一个函数就可以接收另外一个函数作为它自己的形式参数,即实现高阶函数。例如:

>>> def add(x , y , f ): # 把函数作为参数传入。

...   return f(x) + f(y)

>>> add (-5,-2,abs)

7

二、函数式编程的内建函数

1、map(func,seq)

语法:map(func,seq),接收两个参数,一个是函数func,一个是可迭代对象。

作用:将传入的func函数循环作用于seq序列的每个元素上,并返回新的可迭代对象。

注意:map()函数返回的是一个<map object>,我们可以使用list()函数将所获得的结果以list形式返回。

举个栗子:用map()实现f(x)=x*x

>>> def f(x):

...   return x*x

...

>>> map(f,[1,2,3,4,5])

<map object at 0x0327F670>

>>> list(map(f,[1,2,3,4,5]))   # 传入的函数f作用于序列的每个元素调并用list()

[1, 4, 9, 16, 25]

当然还可以使用其他方法实现:

exp1:list( map((lambda x:x*x),[1,2,3,4,5]))

exp2:[x*x for x in [1,2,3,4,5]]

2、reduce(func,list)

语法:reduce(func,list),必须接受两个参数。

作用:把func函数作用在list序列上[x1,x2,x3,...]。取出序列的头两个元素x1和x2,作用于func,取的一个单一的值,例如a,再将a与序列的下一个元素x3做func运算,依此反复。其效果就相当于reduce(f,x1,x2,x3)=f(f(x1,x2),x3)

注意:使用reduce(),必须导入模块from functools import reduce

大家可以自己找个栗子玩玩哈~~~

3、filter()

语法:filter(func,[序列]),接收一个“过滤”函数,和一个序列。返回的是一个Iterator可迭代对象。

作用:按照func规则过滤序列,filter()把传入的函数func依此作用于每个元素,然后根据返回值TrueorFalse,来保留为True的对应元素。

注意:跟map()类似,filter()返回的是一个可迭代对象,故需要使用list()来查看所获得结果并返回list类型。

举个栗子:在一个list中,删除偶数,保留奇数。

>>> def is_odd(n):

...   return n % 2 == 1 # 返回0(false) 或1(True)

...

>>> list( filter(is_odd,[1,2,3,4,5,6,7,8,9]) )

[1, 3, 5, 7, 9]
(0)

相关推荐

  • Python函数式编程指南(二):从函数开始

    2. 从函数开始 2.1. 定义一个函数 如下定义了一个求和函数: 复制代码 代码如下: def add(x, y):     return x + y 关于参数和返回值的语法细节可以参考其他文档,这里就略过了. 使用lambda可以定义简单的单行匿名函数.lambda的语法是: 复制代码 代码如下: lambda args: expression 参数(args)的语法与普通函数一样,同时表达式(expression)的值就是匿名函数调用的返回值:而lambda表达式返回这个匿名函数.如果我们

  • Python函数式编程指南(一):函数式编程概述

    1. 函数式编程概述 1.1. 什么是函数式编程? 函数式编程使用一系列的函数解决问题.函数仅接受输入并产生输出,不包含任何能影响产生输出的内部状态.任何情况下,使用相同的参数调用函数始终能产生同样的结果. 在一个函数式的程序中,输入的数据"流过"一系列的函数,每一个函数根据它的输入产生输出.函数式风格避免编写有"边界效应"(side effects)的函数:修改内部状态,或者是其他无法反应在输出上的变化.完全没有边界效应的函数被称为"纯函数式的"

  • Python装饰器的函数式编程详解

    Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都很相似--都是想要对一个已有的模块做一些"修饰工作",所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去.但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条

  • python函数式编程学习之yield表达式形式详解

    前言 yield的英文单词意思是生产,刚接触Python的时候感到非常困惑,一直没弄明白yield的用法.最近又重新学习了下,所以整理了下面这篇文章,供自己和大家学习参考,下面话不多说了,来一起看看详细的介绍吧. 先来看一个例子 def foo(): print("starting...") while True: res = yield print("res:",res) g = foo() next(g) 在上面的例子里,因为foo函数中有yield关键字,所以

  • Python函数式编程指南(三):迭代器详解

    3. 迭代器 3.1. 迭代器(Iterator)概述 迭代器是访问集合内元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素都被访问一遍后结束. 迭代器不能回退,只能往前进行迭代.这并不是什么很大的缺点,因为人们几乎不需要在迭代途中进行回退操作. 迭代器也不是线程安全的,在多线程环境中对可变集合使用迭代器是一个危险的操作.但如果小心谨慎,或者干脆贯彻函数式思想坚持使用不可变的集合,那这也不是什么大问题. 对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典fo

  • Python函数式编程

    主要内容 1.函数基本语法及特性 2.参数与局部变 3.返回值 4.递归 5.名函数 6.函数式编程介绍 7.阶函数 8.内置函数 函数基本语法及特性 定义 数学函数定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一 个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变 量,y是x的函数.自变量x的取值范围叫做这个函数的定义域. 但编程中的「函数」概念,与数学中的函数是有很 同的 函数是逻辑结构化和过程化的一种编程方法 函数的优点 减少重复代码 使程

  • Python函数式编程指南(四):生成器详解

    4. 生成器(generator) 4.1. 生成器简介 首先请确信,生成器就是一种迭代器.生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中.另外,对于生成器的特殊语法支持使得编写一个生成器比自定义一个常规的迭代器要简单不少,所以生成器也是最常用到的特性之一. 从Python 2.5开始,[PEP 342:通过增强生成器实现协同程序]的实现为生成器加入了更多的特性,这意味着生成器还可以完成更多的工作.这部分我们会在稍后的部分介绍. 4.2. 生成

  • 用Python进行基础的函数式编程的教程

    许多函数式文章讲述的是组合,流水线和高阶函数这样的抽象函数式技术.本文不同,它展示了人们每天编写的命令式,非函数式代码示例,以及将这些示例转换为函数式风格. 文章的第一部分将一些短小的数据转换循环重写成函数式的maps和reduces.第二部分选取长一点的循环,把他们分解成单元,然后把每个单元改成函数式的.第三部分选取一个很长的连续数据转换循环,然后把它分解成函数式流水线. 示例都是用Python写的,因为很多人觉得Python易读.为了证明函数式技术对许多语言来说都相同,许多示例避免使用Pyt

  • Python中的函数式编程:不可变的数据结构

    让我们首先考虑正方形和长方形.如果我们认为在接口方面,忽略了实现细节,方块是否是矩形的子类型? 子类型的定义取决于Liskov代换原理.为了成为一个子类型,它必须能够完成超级类型所做的一切. 如何定义矩形的接口? zope.interface import Interface class IRectangleInterface: get_length: """Squares can do that""" get_width: "&quo

  • 浅析Python函数式编程

    Functional Programming,函数式编程.Python对函数式编程提供部分支持.对于纯函数编程,对任一函数,只要输入是确定的,输出就是确定的,可称之为无副作用. 一.高阶函数 1.变量指向函数 我们知道函数的计算结果可以赋值给变量,例如x = abs(-5). 同理,变量也可以指向函数,例如f = abs. 如果一个变量指向了一个函数,那我们直接调用abs(x)与执行f(x)返回的结果是完全相同. 2.函数名也是变量 我们也可以把函数名看成是一个变量,例如abs()函数.执行语句

  • 详解Python函数式编程—高阶函数

    函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用.而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的. 函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数! Python对函数式编程提供部分支持.由于Python允许使用变量,因此,Python不是纯函数式编程语言. 高阶函数 变量

  • Python函数式编程指南:对生成器全面讲解

    生成器是迭代器,同时也并不仅仅是迭代器,不过迭代器之外的用途实在是不多,所以我们可以大声地说:生成器提供了非常方便的自定义迭代器的途径. 这是函数式编程指南的最后一篇,似乎拖了一个星期才写好,嗯-- 1. 生成器(generator) 1.1. 生成器简介 首先请确信,生成器就是一种迭代器.生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中.另外,对于生成器的特殊语法支持使得编写一个生成器比自定义一个常规的迭代器要简单不少,所以生成器也是最常用到的

  • Python函数式编程实例详解

    本文实例讲述了Python函数式编程.分享给大家供大家参考,具体如下: 函数式编程就是一种抽象程度很高的编程范式,从计算机硬件->汇编语言->C语言->Python抽象程度越高.越贴近于计算,但执行效率也越低.纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用.而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的.函数式编程的一个特点就是,允许把函数

  • 浅谈Python 函数式编程

    匿名函数lambda表达式 什么是匿名函数? 匿名函数,顾名思义就是没有名字的函数,在程序中不用使用 def 进行定义,可以直接使用 lambda 关键字编写简单的代码逻辑.lambda 本质上是一个函数对象,可以将其赋值给另一个变量,再由该变量来调用函数,也可以直接使用. #平时,我们是先定义函数,再进行调用 def power(x): return x ** 2 print(power(2)) #使用lambda表达式的时候,我们可以这样操作 power = lambda x : x **

  • 浅析Python面向对象编程

    概述 很多人接触Python,都是从爬虫开始,其实很多语言都可以做爬虫,只是Python相对其他语言来说,更加简单而已.但是Python并不止于爬虫,在人工智能,科学计算等方面的应用更加广泛.古人云:万丈高楼平地起,要想有长足的发展,打好基础很重要,本文主要讲解Python的面向对象相关知识,仅供学习分享使用,如有不足之处,还请指正. 面向对象的特征 类:用来描述相同事物的特征的集合,如:Person 类,表示人,具有人的属性和特征. 对象:通过类定义的具体的实例,如:zhangsan 表示一个

  • 简析Python函数式编程字符串和元组及函数分类与高阶函数

    目录 函数式编程中的字符串 不变类型元组 普通元组的声明与访问 函数式的分类 any() .all() .len().sum() 对比学习 zip().reversed().enumerate() 高阶函数 函数 max 和 min() map 函数 filter 函数 sorted 函数 同一需求的不同效率问题 函数式编程中的字符串 在函数式编程中,经常用到 Python 字符串,因其是不可变数据结构. 字符串本身是一个对象,具备很多对象方法,与常识中函数的使用不太相同,例如下述代码 my_s

  • Python函数式编程之面向过程面向对象及函数式简析

    目录 Python 函数式编程 同一案例的不同写法,展示函数式编程 面向过程的写法 面向对象的写法 接下来进入正题,函数式编程的落地实现 Python 函数式编程的特点 纯函数 Python 函数式编程 Python 不是纯粹的函数式语言,但你可以使用 Python 进行函数式编程 典型的听君一席话,如听一席话,说白了就是 Python 具备函数式编程的特性, so,可以借用函数式语言的设计模式和编程技术,把代码写成函数式编程的样子 一般此时我会吹嘘一下,函数式代码比较简洁和优雅~ 好了,已经吹

  • Python函数式编程实现登录注册功能

    本文实例为大家分享了Python函数式编程实现登录注册功能的具体代码,供大家参考,具体内容如下 代码: def login(username, password):     """     用于用户登录     :param username:用户输入的用户名      :param password: 用户输入的密码     :return: true表示登录成功,false登录失败     """     # 打开文件     f = ope

  • Python函数式编程之返回函数实例详解

    目录 看代码: 用filter函数来计算素数 用Python高阶函数来实现这个算法: 高阶函数实现打印小于100的素数: 总结 高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回. 看代码: # -*- coding: utf-8 -*- # @File : 返回函数的高阶函数.py # @author: Flyme awei # @email : Flymeawei@163.com # @Time : 2022/8/21 14:48 def sum_fun(*args): def

随机推荐